Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (6): 8-15.doi: 10.6040/j.issn.1672-3961.0.2023.156

• Machine Learning & Data Mining • Previous Articles    

A novel salp swarm algorithm-neural network model for predicting weak singular integrals of boundary elements

LI Yuan1,2, ZHANG Ni1, ZHANG Yanna1,2, LIU Shihao1, LI Xuehui3   

  1. 1. College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, Henan, China;
    2. Engineering Lab of Intelligence Business &
    Internet of Things, Henan Province, Xinxiang 453007, Henan, China;
    3. Hexie Feed Machinery Manufacturing Co., Ltd., Xinxiang 453131, Henan, China
  • Published:2023-12-19

CLC Number: 

  • TP181
[1] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010.
[2] CHENG A H D, CHENG D T. Heritage and early history of the boundary element method[J]. Engineering Analysis with Boundary Elements, 2005, 29(3): 268-302.
[3] FENG S Z, HAN X, LI Z, et al. Ensemble learning for remaining fatigue life prediction of structures with stochastic parameters: a data-driven approach[J]. Applied Mathematical Modelling, 2022, 101: 420-431.
[4] NIKOLOPOULOS S, KALOGERIS I, PAPADOPOULOS V. Machine learning accelerated transient analysis of stochastic nonlinear structures[J]. Engineering Structures, 2022, 257: 114020.
[5] GANTALA T, BALASUBRAMANIAM K. DPAI: a data-driven simulation-assisted-Physics learned AI model for transient ultrasonic wave propagation[J]. Ultrasonics, 2022, 121: 106671.
[6] LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis[J]. Journal of the Royal Society Interface, 2018, 15: 20170844.
[7] 陈泽彬. 基于深度学习的有限元计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN Zebin. Study of the finite element modeling and analysis based deep learning[D]. Harbin: Harbin Institute of Technology, 2020.
[8] NIE Z, JIANG H, KARA L B. Stress field prediction in cantilevered structures using convolutional neural networks[J]. Journal of Computing and Information Science in Engineering, 2020, 20(1): 011002.
[9] CHENG R, YIN X, CHEN L. Machine learning enhanced boundary element method: prediction of gaussian quadrature points[J]. Computer Modeling in Engineering & Sciences, 2022, 131(1): 445-464.
[10] 常宏宇, 朱仁传, 黄山. 基于机器学习的脉动源格林函数预报初探[J]. 海洋工程, 2020, 38(6): 131-141. CHANG Hongyu, ZHU Renchuan, HUANG Shan. Preliminary study on prediction of pulsating source Green function based on machine learning[J]. Ocean Engineering, 2020, 38(6): 131-141.
[11] HUANG S, ZHU R C A, CHANG H Y, et al. Machine learning to approximate free-surface Green's function and its application in wave-body interactions[J]. Engineering Analysis with Boundary Elements, 2021, 134: 35-48.
[12] GUO H, ZHUANG X, RABCZUK T. A deep collocation method for the bending analysis of Kirchhoff plate[J]. Computers, Materials and Continua, 2019, 59(2): 433-456.
[13] 郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题[J]. 固体力学学报, 2021, 42(3): 249-266. GUO Hongwei, ZHUANG Xiaoying. The application of deep collocation method and deep energy method with a two-step optimizer in the bending analysis of kirchhoff thin plate[J]. Acta Mechanica Solida Sinica, 2021, 42(3): 249-266.
[14] LI Y, MAO W, WANG G, et al. A general-purpose machine learning framework for predicting singular integrals in boundary element method[J]. Engineering Analysis with Boundary Elements, 2020, 117: 41-56.
[15] 李源. 弹性动力学问题的时域边界面法[D]. 长沙: 湖南大学, 2015. LI Yuan. Elastodynamic analysis with time-domain boundary face method[D]. Changsha: Hunan University, 2015.
[16] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366.
[17] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[18] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536.
[19] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[20] JIANG Q H, ZHU L J, SHU C, et al. An efficient multilayer RBF neural network and its application to regression problems[J]. Neural Computing and Applications, 2022, 34: 4133-4150.
[21] XUE J, SHEN B. A novel swarm intelligence optimi-zation approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[22] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C] //MHS95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway, USA: IEEE Press, 2002: 39-43.
[23] NIU P, NIU S, LIU N, et al. The defect of the Grey Wolf optimization algorithm and its verification method[J]. Knowledge-Based Systems, 2019, 171: 37-43.
[24] SALGOTRA R, SINGH U, SINGH S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems[J]. Applied Mathematical Modelling, 2021, 89(1): 188-207.
[1] Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7.
[2] Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65.
[3] Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117.
[4] Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14.
[5] Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81.
[6] WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59.
[7] HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95.
[8] CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7.
[9] YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202.
[10] LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42.
[11] LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70.
[12] CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22.
[13] WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61.
[14] HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47.
[15] WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!