Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (6): 8-15.doi: 10.6040/j.issn.1672-3961.0.2023.156
• Machine Learning & Data Mining • Previous Articles
LI Yuan1,2, ZHANG Ni1, ZHANG Yanna1,2, LIU Shihao1, LI Xuehui3
CLC Number:
[1] 姚振汉, 王海涛. 边界元法[M]. 北京: 高等教育出版社, 2010. [2] CHENG A H D, CHENG D T. Heritage and early history of the boundary element method[J]. Engineering Analysis with Boundary Elements, 2005, 29(3): 268-302. [3] FENG S Z, HAN X, LI Z, et al. Ensemble learning for remaining fatigue life prediction of structures with stochastic parameters: a data-driven approach[J]. Applied Mathematical Modelling, 2022, 101: 420-431. [4] NIKOLOPOULOS S, KALOGERIS I, PAPADOPOULOS V. Machine learning accelerated transient analysis of stochastic nonlinear structures[J]. Engineering Structures, 2022, 257: 114020. [5] GANTALA T, BALASUBRAMANIAM K. DPAI: a data-driven simulation-assisted-Physics learned AI model for transient ultrasonic wave propagation[J]. Ultrasonics, 2022, 121: 106671. [6] LIANG L, LIU M, MARTIN C, et al. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis[J]. Journal of the Royal Society Interface, 2018, 15: 20170844. [7] 陈泽彬. 基于深度学习的有限元计算研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. CHEN Zebin. Study of the finite element modeling and analysis based deep learning[D]. Harbin: Harbin Institute of Technology, 2020. [8] NIE Z, JIANG H, KARA L B. Stress field prediction in cantilevered structures using convolutional neural networks[J]. Journal of Computing and Information Science in Engineering, 2020, 20(1): 011002. [9] CHENG R, YIN X, CHEN L. Machine learning enhanced boundary element method: prediction of gaussian quadrature points[J]. Computer Modeling in Engineering & Sciences, 2022, 131(1): 445-464. [10] 常宏宇, 朱仁传, 黄山. 基于机器学习的脉动源格林函数预报初探[J]. 海洋工程, 2020, 38(6): 131-141. CHANG Hongyu, ZHU Renchuan, HUANG Shan. Preliminary study on prediction of pulsating source Green function based on machine learning[J]. Ocean Engineering, 2020, 38(6): 131-141. [11] HUANG S, ZHU R C A, CHANG H Y, et al. Machine learning to approximate free-surface Green's function and its application in wave-body interactions[J]. Engineering Analysis with Boundary Elements, 2021, 134: 35-48. [12] GUO H, ZHUANG X, RABCZUK T. A deep collocation method for the bending analysis of Kirchhoff plate[J]. Computers, Materials and Continua, 2019, 59(2): 433-456. [13] 郭宏伟, 庄晓莹. 采用两步优化器的深度配点法与深度能量法求解薄板弯曲问题[J]. 固体力学学报, 2021, 42(3): 249-266. GUO Hongwei, ZHUANG Xiaoying. The application of deep collocation method and deep energy method with a two-step optimizer in the bending analysis of kirchhoff thin plate[J]. Acta Mechanica Solida Sinica, 2021, 42(3): 249-266. [14] LI Y, MAO W, WANG G, et al. A general-purpose machine learning framework for predicting singular integrals in boundary element method[J]. Engineering Analysis with Boundary Elements, 2020, 117: 41-56. [15] 李源. 弹性动力学问题的时域边界面法[D]. 长沙: 湖南大学, 2015. LI Yuan. Elastodynamic analysis with time-domain boundary face method[D]. Changsha: Hunan University, 2015. [16] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural Networks, 1989, 2(5): 359-366. [17] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191. [18] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323: 533-536. [19] HUANG G B, ZHU Q Y, SIEW C K. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1-3): 489-501. [20] JIANG Q H, ZHU L J, SHU C, et al. An efficient multilayer RBF neural network and its application to regression problems[J]. Neural Computing and Applications, 2022, 34: 4133-4150. [21] XUE J, SHEN B. A novel swarm intelligence optimi-zation approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8(1): 22-34. [22] EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C] //MHS95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. Piscataway, USA: IEEE Press, 2002: 39-43. [23] NIU P, NIU S, LIU N, et al. The defect of the Grey Wolf optimization algorithm and its verification method[J]. Knowledge-Based Systems, 2019, 171: 37-43. [24] SALGOTRA R, SINGH U, SINGH S, et al. Self-adaptive salp swarm algorithm for engineering optimization problems[J]. Applied Mathematical Modelling, 2021, 89(1): 188-207. |
[1] | Yan PENG,Tingting FENG,Jie WANG. An integrated learning approach for O3 mass concentration prediction model [J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 1-7. |
[2] | Yibin WANG,Tianli LI,Yusheng CHENG,Kun QIAN. Label distribution learning based on kernel extreme learning machine auto-encoder [J]. Journal of Shandong University(Engineering Science), 2020, 50(3): 58-65. |
[3] | Chunyang LI,Nan LI,Tao FENG,Zhuhe WANG,Jingkai MA. Abnormal sound detection of washing machines based on deep learning [J]. Journal of Shandong University(Engineering Science), 2020, 50(2): 108-117. |
[4] | Yingda LI,Zongxia XIE. Support vector regression algorithm based on kernel similarity reduced strategy [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 8-14. |
[5] | Kuo PANG,Siqi CHEN,Xiaoying SONG,Li ZOU. Linguistic concept formal decision context analysis based on granular computing [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 74-81. |
[6] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
[7] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[8] | CUI Xiaosong, WANG Ying, MENG Jia, ZOU Li. Online business self-evaluation system based on linguistic-valued similarity reasoning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 1-7. |
[9] | YAO Yu, FENG Jian, ZHANG Huaguang, HAN Kezhen. Weighted hyper-ellipsoidal support vector data description with negative samples for outlier detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 195-202. |
[10] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[11] | LIU Yingxia, WANG Xichang, TANG Xiaoli, CHANG Faliang. Object detection algorithm based on Bayesian probability estimation in wavelet domain [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 63-70. |
[12] | CHEN Zehua, SHANG Xiaohui, CHAI Jing. Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 15-22. |
[13] | WANG Zhiqiang, WEN Yimin, LI Fang. Collaborative recommendation for scenic spots based on multi-aspect ratings [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 54-61. |
[14] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
[15] | WANG Mei, ZENG Zhaohu, SUN Yingqi, YANG Erlong, SONG Kaoping. Bayesian combination of SVR on regularization path based on KNN of input [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 8-14. |
|