Journal of Shandong University(Engineering Science) ›› 2023, Vol. 53 ›› Issue (4): 83-92.doi: 10.6040/j.issn.1672-3961.0.2022.126

• 机器学习与数据挖掘 • Previous Articles    

Boosting classification algorithm for imbalanced drift data stream based on dynamic ensemble selection

ZHANG Xilong, HAN Meng*, CHEN Zhiqiang, WU Hongxin, LI Muhang   

  1. School of Computer Science and Engineering, North Minzu University, Yinchuan 750021, Ningxia, China
  • Published:2023-08-18

CLC Number: 

  • TP301.6
[1] LI H,WANG Y, WANG H. Multi-window based on ensemble learning for classification of imbalanced streaming data[J]. World Wide Web, 2017, 20(6): 1507-1525.
[2] BERNARDO A, GOMES H M, MONTIEL J, et al. C-SMOTE: continuous synthetic minority oversampling for evolving data streams[C] //Proceedings of IEEE International Conference on Big Data. Atlanta, USA: IEEE, 2020: 483-492.
[3] CHAWL N V, LAZAREVIC A, HALL L O, et al. SMOTEBoost: improving prediction of the minority class in boosting[C] //Proceedings of Knowledge Discovery in Databases. Cavtat-Dubrovnik, Croatia: Springer, 2003: 107-109.
[4] DU L, ZHANG Y, GANG K, et al. Online ensemble learning algorithm for imbalanced data stream[J]. Apply Soft Computing, 2021, 107: 107378.
[5] SUN Y, KAMEL M S, WONG A K C, et al. Cost-sensitive boosting for classification of imbalanced data[J]. Pattern Recognition, 2007, 40(12): 3358-3378.
[6] TAO X, LI Q, GUO W, et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification[J]. Information Sciences, 2019, 487:31-56.
[7] REN S Q, ZHU W, LI Z, et al. The gradual resampling ensemble for mining imbalanced data streams with concept drift[J]. Neurocomputing, 2018, 286: 150-166.
[8] REN S Q, ZHU W, LIAO B, et al. Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning[J]. Knowledge Based Systems, 2019, 163: 705-722.
[9] 杜诗语, 韩萌, 申明尧,等. 概念漂移数据流集成分类算法综述[J]. 计算机工程, 2020, 46(1): 15-24. DU Shiyu, HAN Meng, SHEN Mingyao, et al. Survey of ensemble classification algorithms for data streams with concept drift[J]. Computer Engineering, 2020, 46(1): 15-24.
[10] WADEWALE K, DESAI S. Survey on method of drift detection and classification for time varying data set[J]. International Research Journal of Engineering and Technology, 2015, 9(2): 709-713.
[11] BIFET A, GAVALDA R. Learning from time-changing data with adaptive windowing[C] //Proceedings of Seventh SIAM International Conference on Data Mining. Minneapolis, USA: SIAM, 2007: 443-448.
[12] OZA N C, RUSSELL S. Online bagging and boosting[C] //Proceedings of Artificial Intelligence and Statistics. Waikoloa, USA: IEEE, 2005: 105-112.
[13] WANG B Y, PINEAU J. Online bagging and boosting for imbalanced data stream[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(12): 3353-3366.
[14] WANG H, FAN W, YU P S. Mining concept-drifting data streams using ensemble classifiers[C] //Proceedings of Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA: ACM, 2003: 226-235.
[15] STREET W N, KIM Y. A streaming ensemble algorithm(sea)for large-scale classification[C] //Proceedings of seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001: 377-382.
[16] HULTE G, SPENCER L, DOMINGS P. Mining time-changing data streams[C] //Proceedings of the seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, USA: ACM, 2001: 97-106.
[17] CANO A, KRAWCZYK B. Kappa updated ensemble for drifting data stream mining[J]. Machine Learning, 2020, 1(109): 178-218.
[18] ZYBLEWSKI P, SABOURIN R, WOZNIAK M. Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams[J]. Information Fusion, 2021, 66: 138-154.
[19] BERNARDO A, VALLE D E, BIFET A. Increment rebalancing learning on evolving data streams[C] //Proceedings of 20th International Conference on Data Mining Workshops. Sorrento, Italy: IEEE, 2020: 844-850.
[20] WANG S, MINKU L L, YAO X. Resampling-based ensemble methods for online class imbalance learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1356-1368.
[21] 李艳霞, 柴毅, 胡友强, 等.不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673-688. LI Yanxia, CHAI Yi, HU Youqiang, et al. Review of imbalanced data classification methods[J]. Control and Decision, 2019, 34(4): 673-688.
[22] BIFET A, HOLMES G, KIRKBY R,et al. Moa: massive online analysis[J]. Journal of Machine Learning Research, 2010: 1601-1604.
[23] LEMAIRE V, SALPERWYCK C, BONDU A. A survey on supervised classification on data streams[J]. Lecture Notes in Business Information Processing, 2015, 205: 88-125.
[1] Jucheng YANG,Shujie HAN,Lei MAO,Xiangzi DAI,Yarui CHEN. Review of capsule network [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 1-10.
[2] Bo FANG,Hongmei CHEN. A novel double strategies evolutionary fruit fly optimization algorithm [J]. Journal of Shandong University(Engineering Science), 2019, 49(3): 22-31.
[3] WU Hongyan, JI Junzhong. Flower pollination algorithm-based functional module detection in protein-protein interaction networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 21-30.
[4] ZHOU Zhijie, ZHAO Fujun, HU Changhua, WANG Li, FENG Zhichao, LIU Taoyuan. Failure prognosis method based on evidential reasoning for aerospace relay [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 22-29.
[5] REN Yongfeng, DONG Xueyu. An image saliency object detection algorithm based on adaptive manifold similarity [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 56-62.
[6] ZHAI Jiyou, ZHOU Jingbo, REN Yongfeng, WANG Zhijian. A visual saliency detection based on background and foreground interaction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(2): 80-85.
[7] WU Huimin, WU Jingli. An improved cycle basis algorithm for haplotyping a diploid individual [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 9-14.
[8] WANG Lihong, LI Qiang. A selective ensemble method for traveling salesman problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(1): 42-48.
[9] REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 1-6.
[10] WEN Zhi-qiang, ZHU Wen-qiu, HU Yong-xiang. A classification method of halftone image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 7-12.
[11] XU Shan-shan, LIU Ying-an*, XU Sheng. The enhancement algorithm of the boundary information in stereo matching [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(6): 43-49.
[12] CHEN Ming-zhi1, 2, CHEN Jian3, XU Chun-yao3, YU Lun3, LIN Bo-gang1, 2. A new clustering algorithm for user access patterns based on network virtual environments [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 43-49.
[13] WU Tian-zhu . The blind color image watermarking algorithm based on the RBF neural networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 51-55 .
[14] ZHANG Jin-song,LI Qi-qiang,WANG Zhao-xia . Hybrid particle swarm optimization algorithm based on the chaos search [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 47-50 .
[15] JIA Yin-liang,ZHANG Huan-chun,JING Ya-zhi,LIU Jing . A sixstep algorithm for line drawing [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(1): 61-64 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!