Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (3): 1-8.doi: 10.6040/j.issn.1672-3961.0.2021.314
• Machine Learning & Data Mining • Next Articles
CLC Number:
1 |
RAMSAY J O . When the data are functions[J]. Psychometrika, 1982, 47 (4): 379- 396.
doi: 10.1007/BF02293704 |
2 |
BESSE P , RAMSAY J O . Principal components analysis of sampled functions[J]. Psychometrika, 1986, 51 (2): 285- 311.
doi: 10.1007/BF02293986 |
3 | RAMSAY J O . A functional approach to modeling test data[M]. New York, USA: Springer, 1997: 381- 394. |
4 | BOENTE G , FRAIMAN R . Kernel-based functional principal components[J]. Statistics & Probability Letters, 2000, 48 (4): 335- 345. |
5 |
CARDOT H . Conditional functional principal components analysis[J]. Scandinavian Journal of Statistics, 2007, 34 (2): 317- 335.
doi: 10.1111/j.1467-9469.2006.00521.x |
6 |
BOENTE G , SALIBIAN-BARRERA M . S-Estimators for functional principal component analysis[J]. Journal of the American Statistical Association, 2015, 110 (511): 1100- 1111.
doi: 10.1080/01621459.2014.946991 |
7 |
ANEIROS-PÉREZ G , VIEU P . Testing linearity in sem-iparametric functional data analysis[J]. Computational Statistics, 2013, 28 (2): 413- 434.
doi: 10.1007/s00180-012-0308-2 |
8 |
ROSSI F , VILLA N . Support vector machine for functional data classification[J]. Neurocomputing, 2006, 69 (7-9): 730- 742.
doi: 10.1016/j.neucom.2005.12.010 |
9 | FERRATY F , GONZÁLEZ-MANTEIGA W , MARTÍNEZ-CALVO A , et al. Presmoothing in functional linear regression[J]. Statistica Sinica, 2012, 22 (1): 69- 94. |
10 | RACHDI M , VIEU P . Nonparametric regression for functional data: automatic smoothing parameter selection[J]. Journal of Statistical Planning & Inference, 2007, 137 (9): 2784- 2801. |
11 |
CHAMROUKHI F , GLOTIN H , SAMÉ A . Model-based functional mixture discriminant analysis with hidden process regression for curve classification[J]. Neuroc-omputing, 2013, 112, 153- 163.
doi: 10.1016/j.neucom.2012.10.030 |
12 |
PENG Q Y , ZHOU J J , TANG N S . Varying coefficient partially functional linear regression models[J]. Sta-tistical Papers, 2016, 57 (3): 827- 841.
doi: 10.1007/s00362-015-0681-3 |
13 |
JAMES G M , SUGAR C A . Clustering for sparsely sampled functional data[J]. Publications of the American Statistical Association, 2003, 98 (462): 397- 408.
doi: 10.1198/016214503000189 |
14 | PENG J , MVLLER H G . Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[J]. Annals of Applied Statistics, 2008, 2 (3): 1056- 1077. |
15 |
JACQUES J , PREDA C . Funclust: a curves clustering method using functional random variables density approximation[J]. Neurocomputing, 2013, 112, 164- 171.
doi: 10.1016/j.neucom.2012.11.042 |
16 |
DELAIGLE A , HALL P . Achieving near perfect classification for functional data[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, 74 (2): 267- 286.
doi: 10.1111/j.1467-9868.2011.01003.x |
17 |
MOSLER K , MOZHAROVSKYI P . Fast DD-classifi-cation of functional data[J]. Statistical Papers, 2017, 58 (4): 1055- 1089.
doi: 10.1007/s00362-015-0738-3 |
18 |
GÓRECKI T , KRZYŚKO M , RATAJCZAK W , et al. An extension of the classical distance correlation coefficient for multivariate functional data with applications[J]. Statistics in Transition New Series, 2016, 17 (3): 449- 466.
doi: 10.21307/stattrans-2016-032 |
19 | BERRENDERO J R , JUSTEL A , SVARC M . Principal components for multivariate functional data[J]. Comp-utational Statistics & Data Analysis, 2011, 55 (9): 2619- 2634. |
20 | CHIOU J M , CHEN Y T , YANG Y F . Multivariate functional principal component analysis: a normalization approach[J]. Statistica Sinica, 2014, 24, 1571- 1596. |
21 |
HAPP C , GREVEN S . Multivariate functional principal component analysis for data observed on different (dimensional) domains[J]. Journal of the American Statistical Association, 2018, 113 (522): 649- 659.
doi: 10.1080/01621459.2016.1273115 |
22 | 尹雪婷. 多元函数型数据四元数并行特征提取方法研究[D]. 秦皇岛: 燕山大学电器工程学院, 2017. |
YIN Xueting. A research on quaternion parallel feature extraction of multivariate functional data[D]. Qin-huangdao: School of Electrical Engineering, Yanshan University, 2017. | |
23 |
GÓRECKI T , KRZYŚKO M , WASZAK Ƚ , et al. Selected statistical methods of data analysis for multivariate functional data[J]. Statistical Papers, 2018, 59 (1): 153- 182.
doi: 10.1007/s00362-016-0757-8 |
24 |
HANUSZ Z , KRZYŚKO M , NADULSKI R , et al. Discriminant coordinates analysis for multivariate fun-ctional data[J]. Communications in Statistics-Theory and Methods, 2020, 49 (18): 4506- 4519.
doi: 10.1080/03610926.2019.1602650 |
25 |
VIRTA J , LI B , NORDHAUSEN K , et al. Independent component analysis for multivariate functional data[J]. Journal of Multivariate Analysis, 2020, 176, 104568.
doi: 10.1016/j.jmva.2019.104568 |
26 |
GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Class-ification problems based on regression models for multi-dimensional functional data[J]. Statistics in Transition New Series, 2015, 16 (1): 97- 110.
doi: 10.21307/stattrans-2015-006 |
27 |
KRZYSKO M , SMAGA Ƚ . An application of functional multivariate regression model to multiclass classification[J]. Statistics in Transition New Series, 2017, 18 (3): 433- 442.
doi: 10.21307/stattrans-2016-079 |
28 | DAI W , GENTON M G . An outlyingness matrix for multivariate functional data classification[J]. Statistica Sinica, 2018, 28 (4): 2435- 2454. |
29 |
BLANQUERO R , CARRIZOSA E , JIMÉNEZ-CORDERO A , et al. Variable selection in classification for multi-variate functional data[J]. Information Sciences, 2019, 481, 445- 462.
doi: 10.1016/j.ins.2018.12.060 |
30 |
GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Variable selection in multivariate functional data classification[J]. Statistics in Transition New Series, 2019, 20 (2): 123- 138.
doi: 10.21307/stattrans-2019-018 |
31 | RAMSAY J O , SILVERMAN B W . Functional data analysis[M]. Berlin, Germany: Springer, 2005. |
32 |
AGUILERA A M , AGUILERA-MORILLO M C . Penalized PCA approaches for B-spline expansions of smooth functional data[J]. Applied Mathematics and Computation, 2013, 219 (14): 7805- 7819.
doi: 10.1016/j.amc.2013.02.009 |
33 | MCCALL C, REDDY K, SHAH M. Macro-class selection for hierarchical k-NN classification of inertial sensor data[C]// Proceedings of the 2nd International Conference on Pervasive and Embedded Computing and Communication Systems. Setúbal, Portugal: SCITE-PRESS, 2012: 106-114. |
[1] | LIU Xinfeng, ZHANG YiNi, XU Huisan, SONG Ling, CHEN Mengya. Shadow occlusion diagnosis of distributed photovoltaic power station based on random forest and expert system [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 98-104. |
[2] | Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104. |
[3] | Ya'nan YANG,Bin XIA,Nan XIE,Wenhao YUAN. Hybrid localization algorithm based on BP neural network and multivariable Taylor series [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 36-40. |
[4] | CAO Ya, DENG Zhaohong, WANG Shitong. An radial basis function neural network model based on monotonic constraints [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 127-133. |
[5] | LIU Chen, CAI Ting. A localization algorithm based on RSSI vector for wireless sensor networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 23-30. |
[6] | ZHAI Junhai, ZHANG Sufang, HU Wenxiang, WANG Xizhao. Radial basis function extreme learning machine based on core sets [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 1-5. |
[7] | LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38. |
[8] | FANG Xiao-nan1,2, ZHANG Hua-xiang1,2*, GAO Shuang1,2. Web spam detection based on SMOTE and random forests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 22-27. |
[9] | PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29. |
[10] | CHEN Jintan1, 2, KANG Hengzheng3*, YANG Yan3, ZHOU Weixiong 4. A classification method for class-imbalanced data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 96-101. |
|