Journal of Shandong University(Engineering Science) ›› 2022, Vol. 52 ›› Issue (3): 1-8.doi: 10.6040/j.issn.1672-3961.0.2021.314

• Machine Learning & Data Mining •     Next Articles

Recognition learning based on multivariate functional principal component representation

Yinfeng MENG(),Qingfang LI   

  1. School of Mathematical Science, Shanxi University, Taiyuan 030006, Shanxi, China
  • Received:2021-06-11 Online:2022-06-20 Published:2022-06-23

Abstract:

Aiming at the problem of multi-dimensional information fusion in recognition learning, a recognition method based on multivariate functional principal component representation was proposed. The numerical calculation method of multivariate functional principal components was given. The joint covariance operator was used to calculate eigenvalues and eigenvectors, and the key distinguishing features were extracted. Based on these comprehensive features, the random forest method was used to recognize and learn multivariate functional data. The recognition performance of multivariate functional principal component representation method was compared with other representation methods on simulated data and real data. The experimental results showed that the accuracy was equal to 1 in the simulation dataset, English handwritten dataset and Chinese handwritten dataset, and 0.954 4 in the motion dataset. Compared with other methods, multivariate functional principal component analysis (MFPCA) had better recognition effect and improved the recognition accuracy effectively.

Key words: functional data, basis function, MFPCA, random forest, accuracy

CLC Number: 

  • TP391

Fig.1

Dataset of simulation"

Table 1

MSE values of spline fitting of different orders"

阶数 EMS1 EMS2
2 0.104 0 0.103 5
3 0.097 4 0.097 4
4 0.096 8 0.096 9
5 0.057 9 0.059 2
6 0.057 4 0.058 6
7 0.038 4 0.038 7

Fig.2

Spline basis"

Fig.3

The generation and fitting of data"

Fig.4

The first two principal component curves"

Table 2

The contribution rate of each principal component  %"

主成分 贡献率 累计贡献率
Z1 64.76 64.76
Z2 24.86 89.62
Z3 4.58 94.20
Z4 2.27 96.47
Z5 1.34 97.81

Fig.5

Principal component scores of each observed object"

Fig.6

English handwritten dataset"

Fig.7

Segmented "fda" dataset"

Fig.8

"d" dataset"

Fig.9

The image of new dataset"

Fig.10

Three types of functional curves"

Table 3

The classification accuracy of English handwritten dataset"

特征抽取方法 准确率均值 准确率方差
B-spline 1.000 0 0
Fourier 1.000 0 0
Polygonal 1.000 0 0
Exponential 1.000 0 0
Monomial 1.000 0 0
Power 1.000 0 0
MFPCA 1.000 0 0

Fig.11

3D plot of Chinese "statistics""

Fig.12

The image of new dataset"

Table 4

The classification accuracy of Chinese handwritten dataset"

特征抽取方法 准确率均值 准确率方差
B-spline 0.999 1 0.006 1
Fourier 1.000 0 0
Polygonal 1.000 0 0
Exponential 1.000 0 0
Monomial 0.986 1 0.024 6
Power 0.989 1 0.019 9
MFPCA 1.000 0 0

Fig.13

Curve plots on four dimensions of three types of data"

Table 5

The classification accuracy of motion dataset"

特征抽取方法 准确率均值 准确率方差
B-spline 0.922 8 0.061 6
Fourier 0.928 3 0.055 4
Polygonal 0.932 8 0.060 8
Exponential 0.907 2 0.064 7
Monomial 0.862 2 0.083 7
Power 0.858 9 0.078 7
MFPCA 0.954 4 0.053 2
1 RAMSAY J O . When the data are functions[J]. Psychometrika, 1982, 47 (4): 379- 396.
doi: 10.1007/BF02293704
2 BESSE P , RAMSAY J O . Principal components analysis of sampled functions[J]. Psychometrika, 1986, 51 (2): 285- 311.
doi: 10.1007/BF02293986
3 RAMSAY J O . A functional approach to modeling test data[M]. New York, USA: Springer, 1997: 381- 394.
4 BOENTE G , FRAIMAN R . Kernel-based functional principal components[J]. Statistics & Probability Letters, 2000, 48 (4): 335- 345.
5 CARDOT H . Conditional functional principal components analysis[J]. Scandinavian Journal of Statistics, 2007, 34 (2): 317- 335.
doi: 10.1111/j.1467-9469.2006.00521.x
6 BOENTE G , SALIBIAN-BARRERA M . S-Estimators for functional principal component analysis[J]. Journal of the American Statistical Association, 2015, 110 (511): 1100- 1111.
doi: 10.1080/01621459.2014.946991
7 ANEIROS-PÉREZ G , VIEU P . Testing linearity in sem-iparametric functional data analysis[J]. Computational Statistics, 2013, 28 (2): 413- 434.
doi: 10.1007/s00180-012-0308-2
8 ROSSI F , VILLA N . Support vector machine for functional data classification[J]. Neurocomputing, 2006, 69 (7-9): 730- 742.
doi: 10.1016/j.neucom.2005.12.010
9 FERRATY F , GONZÁLEZ-MANTEIGA W , MARTÍNEZ-CALVO A , et al. Presmoothing in functional linear regression[J]. Statistica Sinica, 2012, 22 (1): 69- 94.
10 RACHDI M , VIEU P . Nonparametric regression for functional data: automatic smoothing parameter selection[J]. Journal of Statistical Planning & Inference, 2007, 137 (9): 2784- 2801.
11 CHAMROUKHI F , GLOTIN H , SAMÉ A . Model-based functional mixture discriminant analysis with hidden process regression for curve classification[J]. Neuroc-omputing, 2013, 112, 153- 163.
doi: 10.1016/j.neucom.2012.10.030
12 PENG Q Y , ZHOU J J , TANG N S . Varying coefficient partially functional linear regression models[J]. Sta-tistical Papers, 2016, 57 (3): 827- 841.
doi: 10.1007/s00362-015-0681-3
13 JAMES G M , SUGAR C A . Clustering for sparsely sampled functional data[J]. Publications of the American Statistical Association, 2003, 98 (462): 397- 408.
doi: 10.1198/016214503000189
14 PENG J , MVLLER H G . Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[J]. Annals of Applied Statistics, 2008, 2 (3): 1056- 1077.
15 JACQUES J , PREDA C . Funclust: a curves clustering method using functional random variables density approximation[J]. Neurocomputing, 2013, 112, 164- 171.
doi: 10.1016/j.neucom.2012.11.042
16 DELAIGLE A , HALL P . Achieving near perfect classification for functional data[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, 74 (2): 267- 286.
doi: 10.1111/j.1467-9868.2011.01003.x
17 MOSLER K , MOZHAROVSKYI P . Fast DD-classifi-cation of functional data[J]. Statistical Papers, 2017, 58 (4): 1055- 1089.
doi: 10.1007/s00362-015-0738-3
18 GÓRECKI T , KRZYŚKO M , RATAJCZAK W , et al. An extension of the classical distance correlation coefficient for multivariate functional data with applications[J]. Statistics in Transition New Series, 2016, 17 (3): 449- 466.
doi: 10.21307/stattrans-2016-032
19 BERRENDERO J R , JUSTEL A , SVARC M . Principal components for multivariate functional data[J]. Comp-utational Statistics & Data Analysis, 2011, 55 (9): 2619- 2634.
20 CHIOU J M , CHEN Y T , YANG Y F . Multivariate functional principal component analysis: a normalization approach[J]. Statistica Sinica, 2014, 24, 1571- 1596.
21 HAPP C , GREVEN S . Multivariate functional principal component analysis for data observed on different (dimensional) domains[J]. Journal of the American Statistical Association, 2018, 113 (522): 649- 659.
doi: 10.1080/01621459.2016.1273115
22 尹雪婷. 多元函数型数据四元数并行特征提取方法研究[D]. 秦皇岛: 燕山大学电器工程学院, 2017.
YIN Xueting. A research on quaternion parallel feature extraction of multivariate functional data[D]. Qin-huangdao: School of Electrical Engineering, Yanshan University, 2017.
23 GÓRECKI T , KRZYŚKO M , WASZAK Ƚ , et al. Selected statistical methods of data analysis for multivariate functional data[J]. Statistical Papers, 2018, 59 (1): 153- 182.
doi: 10.1007/s00362-016-0757-8
24 HANUSZ Z , KRZYŚKO M , NADULSKI R , et al. Discriminant coordinates analysis for multivariate fun-ctional data[J]. Communications in Statistics-Theory and Methods, 2020, 49 (18): 4506- 4519.
doi: 10.1080/03610926.2019.1602650
25 VIRTA J , LI B , NORDHAUSEN K , et al. Independent component analysis for multivariate functional data[J]. Journal of Multivariate Analysis, 2020, 176, 104568.
doi: 10.1016/j.jmva.2019.104568
26 GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Class-ification problems based on regression models for multi-dimensional functional data[J]. Statistics in Transition New Series, 2015, 16 (1): 97- 110.
doi: 10.21307/stattrans-2015-006
27 KRZYSKO M , SMAGA Ƚ . An application of functional multivariate regression model to multiclass classification[J]. Statistics in Transition New Series, 2017, 18 (3): 433- 442.
doi: 10.21307/stattrans-2016-079
28 DAI W , GENTON M G . An outlyingness matrix for multivariate functional data classification[J]. Statistica Sinica, 2018, 28 (4): 2435- 2454.
29 BLANQUERO R , CARRIZOSA E , JIMÉNEZ-CORDERO A , et al. Variable selection in classification for multi-variate functional data[J]. Information Sciences, 2019, 481, 445- 462.
doi: 10.1016/j.ins.2018.12.060
30 GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Variable selection in multivariate functional data classification[J]. Statistics in Transition New Series, 2019, 20 (2): 123- 138.
doi: 10.21307/stattrans-2019-018
31 RAMSAY J O , SILVERMAN B W . Functional data analysis[M]. Berlin, Germany: Springer, 2005.
32 AGUILERA A M , AGUILERA-MORILLO M C . Penalized PCA approaches for B-spline expansions of smooth functional data[J]. Applied Mathematics and Computation, 2013, 219 (14): 7805- 7819.
doi: 10.1016/j.amc.2013.02.009
33 MCCALL C, REDDY K, SHAH M. Macro-class selection for hierarchical k-NN classification of inertial sensor data[C]// Proceedings of the 2nd International Conference on Pervasive and Embedded Computing and Communication Systems. Setúbal, Portugal: SCITE-PRESS, 2012: 106-114.
[1] LIU Xinfeng, ZHANG YiNi, XU Huisan, SONG Ling, CHEN Mengya. Shadow occlusion diagnosis of distributed photovoltaic power station based on random forest and expert system [J]. Journal of Shandong University(Engineering Science), 2021, 51(2): 98-104.
[2] Peng WAN. Object detection of 3D point clouds based on F-PointNet [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 98-104.
[3] Ya'nan YANG,Bin XIA,Nan XIE,Wenhao YUAN. Hybrid localization algorithm based on BP neural network and multivariable Taylor series [J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 36-40.
[4] CAO Ya, DENG Zhaohong, WANG Shitong. An radial basis function neural network model based on monotonic constraints [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 127-133.
[5] LIU Chen, CAI Ting. A localization algorithm based on RSSI vector for wireless sensor networks [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 23-30.
[6] ZHAI Junhai, ZHANG Sufang, HU Wenxiang, WANG Xizhao. Radial basis function extreme learning machine based on core sets [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 1-5.
[7] LI Xiang1, ZHU Quan-yin1, WANG Zun2. Research of wavelet neural network based on variable basis functions and GentleAdaBoost algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(5): 31-38.
[8] FANG Xiao-nan1,2, ZHANG Hua-xiang1,2*, GAO Shuang1,2. Web spam detection based on SMOTE and random forests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 22-27.
[9] PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29.
[10] CHEN Jintan1, 2, KANG Hengzheng3*, YANG Yan3, ZHOU Weixiong 4. A classification method for class-imbalanced data [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(2): 96-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HE Dongzhi, ZHANG Jifeng, ZHAO Pengfei. Parallel implementing probabilistic spreading algorithm using MapReduce programming mode[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 0, (): 22 -28 .
[2] LIU Yun,QIU Xiao-guo . COD determination by interpolation of the  TOC coefficient method[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(4): 108 -117 .
[3] DUN Yue-Qin, MIN Yue, YUAN Jian-Sheng. Characteristic analysis of the forward response of array lateral logging[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(1): 121 -125 .
[4] WU Jun-fei ,WANG Wei-qiang ,HU De-dong ,CUI Yu-liang , . he explosive energy analysis and calculation of pingyin urea reactor body[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 80 -83 .
[5] TIAN Wei,QIAO Yi-zheng,MA Zhi-qiang . Offline Chinese signature verification based on the second feature extraction by DWT[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 55 -59 .
[6] Chen Dongyan. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(1): 41 -49 .
[7]

YANG Guohui1, SUN Xiaoyu1,2*, TSUBAKI Noritatsu1

. Zeolite capsule catalyst for biogasoline[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 92 -97 .
[8] ZHAO Wei, AI Hongqi. pH effect on the structure of Aβ42 fibrils[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(2): 134 -138 .
[9] LIN Yan,WEI Dong, . LIN Yan1,WEI Dong2[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(3): 103 -107 .
[10] HUANG Ling, DA Qing-li. Cost  contract  incentives and  analysis for  the  reverse  supply chain of  remanufacturing  based  on  JIT[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(6): 105 -111 .