Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (2): 98-104.doi: 10.6040/j.issn.1672-3961.0.2020.404

Previous Articles    

Shadow occlusion diagnosis of distributed photovoltaic power station based on random forest and expert system

LIU Xinfeng, ZHANG YiNi, XU Huisan, SONG Ling*, CHEN Mengya   

  1. School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Published:2021-04-16

Abstract: A human-machine collaborative discriminant method based on the random forest algorithm was proposed to diagnose distributed photovoltaic shadow occlusion. Key characteristic parameters, such as the current dispersion rate on the direct current side of the string, solar altitude angle, solar azimuth angle, and instantaneous power generation level of the power station, were constructed based on the analysis of the shadow occlusion mechanism and the conversion of inverter telemetry parameters. The random forest shadow occlusion diagnosis model was subsequently established. The parameters were optimized based on the grid search method and the K-fold cross-validation method, and the splitting method based on information gain was determined by comparing the accuracy with other machine learning algorithms, such as support vector machine, logistic regression, and decision tree. The random forest algorithm had obvious advantages in shadow occlusion diagnosis scenes. An expert system was combined to obtain the diagnosis position, and then the effectiveness of the method using the random forest algorithm based on information gain and an expert system was verified on site.

Key words: distributed photovoltaic, random forest, expert system, shadow occlusion diagnosis, analysis of shadow occlusion mechanism

CLC Number: 

  • TP181
[1] 姜安印, 刘博. 精准扶贫背景下光伏扶贫问题研究[J]. 农林经济管理学报, 2017, 16(6):789-794. JIANG Anyin, LIU Bo. Poverty alleviation in the context of precision poverty alleviation[J]. Journal of Agro-Forestry Economics and Management, 2017, 16(6):789-794.
[2] 李善寿. 阴影条件下光伏系统的失配分析与优化控制研究[D]. 合肥:合肥工业大学, 2016. LI Shanshou. Study on the analysis of mismatching and optimal control of PV system under shading conditions[D]. Hefei: Hefei University of Technology, 2016.
[3] 程泽,宋成,刘力. 遮挡下光伏组件中旁路二极管的研究[J]. 电力电子技术, 2017, 51(4):50-53. CHENG Ze, SONG Cheng, LIU Li. Study of bypass diode in photovoltaic module under shading condition[J]. Power Electronics, 2017, 51(4):50-53.
[4] 康开岚. 基于GSO的局部阴影光伏阵列最大功率点跟踪研究[D]. 兰州:兰州理工大学, 2017. KANG Kailan. Maximum power point tracking for PV array under partially shaded conditions based on glow-worm swarm optimization algorithm[D]. Lanzhou: Lanzhou University of Technology, 2017.
[5] 王凯丽, 张巧杰. 基于IPSO算法的光伏阵列多峰值MPPT研究[J]. 电气工程学报, 2016, 11(10):53-58. WANG Kaili, ZHANG Qiaojie. Research on multi-peak MPPT of photovoltaic array based on IPSO algorithm[J]. Journal of Electrical Engineering, 2016, 11(10):53-58.
[6] 胡义华,陈昊,徐瑞东,等. 光伏电池板在阴影影响下输出特性[J]. 电工技术学报, 2011, 26(1):123-128. HU Yihua, CHEN Hao, XU Ruidong, et al. PV module characteristics effected by shadow problem[J]. Trans-actions of China Electrotechnical Society, 2011, 26(1):123-128.
[7] 王丰, 孔鹏举, LEE F C,等. 基于分布式最大功率跟踪的光伏系统输出特性分析[J]. 电工技术学报, 2015, 30(24):133-140. WANG Feng, KONG Pengju, LEE F C, et al. Output characteristic analysis of distributed maximum power point tracking PV system[J].Transactions of China Electrotechnical Society, 2015, 30(24):133-140.
[8] 陈华宝, 韩伟, 张晓东. 基于功率预测的光伏组件阴影故障类型判定[J]. 电测与仪表, 2018, 55(7):122-129. CHEN Huabao, HAN Wei, ZHANG Xiaodong. Judgment on shadow fault type for photovoltaic module based on power prediction[J]. Electrical Measurement & Instrumentation, 2018, 55(7):122-129.
[9] 贾嵘, 李云桥, 张惠智,等.基于改进BP神经网络的光伏阵列多传感器故障检测定位方法[J].太阳能学报, 2018, 39(1):110-116. JIA Rong, LI Yunqiao, ZHANG Huizhi, et al. Multi-sensor fault detection and positioning method of photovoltaic array based on improved BP neural network[J]. Acta Energiae Solaris Sinica, 2018, 39(1):110-116.
[10] 胡义华, 陈昊, 徐瑞东,等. 基于最优传感器配置的光伏阵列故障诊断[J]. 中国电机工程学报, 2011, 31(33):19-30. HU Yihua, CHEN Hao, XU Ruidong, et al. Photovo-ltaic(PV)array fault diagnosis strategy based on optimal sensor placement[J]. Proceedings of the CSEE, 2011, 31(33):19-30.
[11] 唐萁, 朱永强, 郝嘉诚. 基于传感器最优布置的光伏阵列阴影诊断与定位[J]. 太阳能学报, 2018,39(2):513-519. TANG Qi, ZHU Yongqiang, HAO Jiacheng. Shadow diagnosis and localization of PV array based on optimal sensor collocation[J]. Acta Energiae Solaris Sinica, 2018, 39(2):513-519.
[12] 丛伟伦,张博,夏亚东,等.基于马尔可夫链的光伏电站遮挡实时诊断算法[J].太阳能学报,2020,41(4):67-72. CONG Weilun, ZHANG Bo, XIA Yadong, et al. Diagnosis algorithm for real-time shaded analysis of photovoltaic power station based on Markov chain[J]. Acta Energiae Solaris Sinica, 2020, 41(4):67-72.
[13] 郭宝柱. 光伏阵列热斑的红外图像处理的研究[D]. 天津:天津理工大学, 2016. GUO Baozhu. Research on infrared image processing of photovoltaic array of hot spot[D]. Tianjin: Tianjin University of Technology, 2016.
[14] TAKASHIMA T, YAMAGUCHI J, OYANI K, et al. Experimental studies of failure detection methods in PV module strings[J]. Solar Energy Materials and Solar Cells, 2009, 93(6/7):1079-1082.
[15] 李鹏鹏,周丹阳,姜朝明,等.基于随机森林算法的95598投诉预测方法研究[J].浙江电力,2020,39(4):57-62. LI Pengpeng, ZHOU Danyang, JIANG Chaoming, et al. Research on 95598 complaint prediction method based on random forest [J]. Zhejiang Electric Power, 2020, 39(4): 57-62.
[16] 罗艳,肖辅盛,王庭刚,等.基于随机森林的电网实时运行风险评估方法[J].信息技术,2020,44(4):23-26. LUO Yan, XIAO Fusheng, WANG Tinggang, et al. Real-time risk assessment method for power grid operation based on random forest[J]. Information Technology, 2020, 44(4):23-26.
[17] 曹正凤. 随机森林算法优化研究[D]. 北京:首都经济贸易大学, 2014. CAO Zhengfeng. Study on optimization of random forests algorithm[D]. Beijing: Capital University of Economics and Business, 2014.
[18] 王国安,米鸿涛,邓天宏,等. 太阳高度角和日出日落时刻太阳方位角一年变化范围的计算[J]. 气象与环境科学, 2007, 30(增刊9):161-164. WANG Guoan, MI Hongtao, DENG Tianhong, et al. Calculation of the change range of the sun high angle and the azimuth of sunrise and sunset in one year[J]. Meteorological and Environmental Sciences, 2007, 30(Suppl.9):161-164.
[1] Fangyun HAN,Liang QIAO,Bincheng ZHAO,Li ZHANG. Weighted value of solar tariff based on time-of-use electricity price [J]. Journal of Shandong University(Engineering Science), 2019, 49(6): 93-97,106.
[2] Yutian LIU, Runjia SUN, Hongtao WANG, Xueping GU. Review on application of artificial intelligence in power system restoration [J]. Journal of Shandong University(Engineering Science), 2019, 49(5): 1-8.
[3] Fei WANG,Chunyi WANG,Chuanyong WANG,Guangfeng ZHAO,Mu LI,Xiaohan SHI. Restrictions and countermeasures of distributed PV integration based on secondary battery energy storage system [J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 109-115, 121.
[4] FANG Xiao-nan1,2, ZHANG Hua-xiang1,2*, GAO Shuang1,2. Web spam detection based on SMOTE and random forests [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(1): 22-27.
[5] ZHOU Feng-yu,WU Ai-guo,LI Yi-bin, . Control method and implementation of an inspection robot for 110kV power transmission lines [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 31-35 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!