Journal of Shandong University(Engineering Science) ›› 2021, Vol. 51 ›› Issue (2): 34-46.doi: 10.6040/j.issn.1672-3961.0.2020.234
ZHU Changming, YUE Wen, WANG Panhong, SHEN Zhenyu, ZHOU Rigui
CLC Number:
[1] FU Y J, LIU J M, LI X L, et al. Service usage analysis in mobile messaging apps: a multi-label multi-view perspective[C] //IEEE International Conference on Data Mining. Barcelona, Spain: IEEE Xplore, 2016: 877-882. [2] YIN Q Y, ZHANG J G, WU S, et al. Multi-view clustering via joint feature selection and partially constrained cluster label learning[J]. Pattern Recognition, 2019, 93(19):380-391. [3] WANG G X, ZHANG C Q, ZHU P F, et al. Semisupervised multi-view multi-label classification based on nonnegative matrix factorization[C] //International Conference on Artificial Neural Networks and Machine Learning. Alghero, Italy: Springer, 2017: 340-348. [4] MAEDA K, TAKAHASHI S, OGAWA T, et al. Multi-feature fusion based on supervised multi-view multilabel canonical correlation projection[C] //IEEE International Conference on Acoustics, Speech and Signal Processing. Brughton, UK: IEEE Xplore, 2019: 3936-3940. [5] ZOU F H, LIU Y, WANG H, et al. Multi-view multi-label learn-ing for image annotation [J]. Multimedia Tools and Applications, 2016, 75(20): 12627-12644. [6] YAO Y Y. An outline of a theory of three-way decisions[C] //Proceed-ings of the 8th International Conference on Rough Sets and Current Trends in Computing. Heidelberg, Germany: Springer, 2012: 1-17. [7] YAO Y Y. Three-way decisions and cognitive computing[J]. Cognitive Computation, 2016, 8(4):543-554. [8] YU H, JIAO P, YAO Y Y, et al. Detecting and refining overlapping regions in complex networks with threeway decision[J]. Information Sciences, 2016, 373(23):21-41. [9] YU H. A framework of three-way cluster analysis[C] //Proceedings of the International Joint Conference on Rough Sets. Olsztyn, Poland: Springer, 2017: 300-312. [10] ZHU C M, MIAO D Q, WANG Z, et al. Global and local multi-view multi-label learning [J]. Neurocomputing, 2020, 371(32): 67-77. [11] YU H, WANG X C, WANG G Y, et al. An active three-way clustering method via low-rank matrices for multi-view data[J]. Information Sciences, 2020, 507(27): 823-839. [12] BASU S, BANERJEE A, MOONEY R. Active semi-supervision for pairwise constrained clustering[C] //Proceedings of the 4th SIAM International Conference on Data Mining. Lake Buena Vista, USA: SIAM, 2004: 333-344. [13] MALLAPRAGADA P, JIN R, JAIN A. Active query selection for semi-supervised clustering[C] //Proceedings of the 19th International Conference on Pattern Recognition. Tampa, USA: IEEE Explore, 2008: 1-4. [14] LUO D J, DING C, HUANG H, et al. Non-negative Laplacian embedding[C] //Proceedings of the 9th IEEE International Conference on Data Mining(ICDM). Miami, USA: IEEE Explore, 2009: 337-346. [15] ZHANG C Q, YU Z W, HU Q H, et al. Latent semantic aware multi-view multi-label classification[C] //32th AAAI Conference on Artificial Intelligence. New Orleans, USA: AAAI Press, 2018: 4414-4421. [16] ZHANG C Q, FU H Z, HU Q H, et al. Generalized latent multi-view subspace clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(1): 86-99. [17] ZHANG J, LI C D, CAO D L, et al. Multi-label learning with label-specific features by resolving label correlations[J]. Knowledge-Based Systems, 2018, 159:148-157. [18] HUANG J, QIN F, ZHENG X, et al. Improving multi-label classification with missing labels by learning label-specific feature[J]. Information Sciences, 2019, 492(26):124-146. [19] CHUA T S, TANG J H, HONG R C, et al. Nus-wide: a real-world web image database from national university of Singapor[C] //Proceedings of the ACM International Conference on Image and Video Retrieval. Santorini Island, Greece: ACM, 2009: 368-376. [20] HE Z Y, CHEN C, BU J J, et al. Multi-view based multi-label propagation for image annotation[J]. Neurocomputing, 2015, 168(27):853-860. [21] SUN S L, ZHANG Q J. Multiple-view Multiple-learner Semi-supervised Learning[J]. Neural Processing Letters, 2011, 34:229-240. [22] WU F, JING X Y, YOU X G, et al. Multi-view low-rank dictionary learning for image classification[J]. Pattern Recognition, 2016, 50(16):143-154. [23] WENG W, LIN Y J, WU S X, et al. Multilabel learning based on label-specific features and local pairwise label correlation[J]. Neurocomputing, 2018, 273(30):385-394. [24] KUMAR V, PUJARI A, PADMANSBHAN V, et al. Multi-label classification using hierarchical embedding[J]. Expert Systems with Applications, 2018, 91:263-269. [25] ZHU Y, KWOK J, ZHOU Z H. Multi-Label Learning with Global and local label correlation[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 6(30):1081-1094. [26] QIAN B Y, WANG X, YE J P, et al. A reconstruction error based framework for multi-label and multi-view learning [J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3):594-607. |
[1] | ZHANG Peirui, YANG Yan, XING Huanlai, YU Xiuying. Incremental multi-view clustering algorithm based on kernel K-means [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 48-53. |
[2] | GUO Chao, YANG Yan, JIANG Yongquan, SONG Yi. Condition recognition of high-speed train based on multi-view classification ensemble [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 7-14. |
[3] | GAO Shuang1,2, ZHANG Hua-xiang1,2*, FANG Xiao-nan1,2. Independent component analysis and co-training based Web spam detection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 29-34. |
[4] | LI Ya-lin1,2, ZHANG Hua-xiang1,2*, FENG Xin-ying1,2. A new multi-label learning algorithm based on semi-supervised learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(2): 18-22. |
|