1 |
VINYALS O, TOSHEV A, BENGIO S, et al. Show and tell: a neural image caption generator[C]//Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 3156-3164.
|
2 |
JING Baoyu, XIE Pengtao, XING ERIC. On the automatic generation of medical imaging reports[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia: ACL, 2018.
|
3 |
GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada: MIT Press, 2014.
|
4 |
SUTTON R S , BARTO A G . Introduction to reinforcement learning[M]. Cambridge, UK: MIT Press, 1998.
|
5 |
DENTON E L, CHINTALA S, FERGUS R. Deep generative image models using a laplacian pyramid of adversarial networks[C]//Proceedings of the Advances in Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015.
|
6 |
LI Changliang, SU Yixin, LIU Wenju. Text-to-text generative adversarial networks[C]//2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil: IEEE, 2018: 1-7.
|
7 |
CHEN L, ZHANG H, XIAO J, et al. SCA-CNN: spatial and shannel-wise attention in convolutional networks for image captioning[C]//Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016.
|
8 |
XU K, BA J, KIROS R, et al. Show, attend and tell: neural image caption generation with visual attention[C]//Proceedings of the International Conference on Machine Learning. Lille, France: ACM, 2015: 2048-2057.
|
9 |
YOU Quanzeng, JIN Hailin, WANG Zhaowen, et al. Image captioning with semantic attention[C]//Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 4651-4659.
|
10 |
LU Jiasen, XIONG Caiming, PARIKH DEVI, et al. Knowing when to look: adaptive attention via a visual sentinel for image captioning[C]//Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 375-383.
|
11 |
WANG Xiaosong, PENG Yifan, LU Zhiyong, et al. Tienet: Text-image embedding network for common thorax disease classification and reporting in chest x-rays[C]//Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 9049-9058.
|
12 |
LI Y, LIANG X, HU Z, et al. Hybrid retrieval-generation reinforced agent for medical image report generation[C]// Advances in Neural Information Processing Systems. Montreal, Canada: MIT Press, 2018: 1530-1540.
|
13 |
KISILEV P , WALACH E , BARKAN E , et al. From medical image to automatic medical report generation[J]. IBM Journal of Research and Development, 2015, 59 (2/3): 2:1- 2:7.
|
14 |
SHIN H C, ROBERTS K, LU Le, et al. Learning to read chest x-rays: recurrent neural cascade model for automated image annotation[C]//Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 2497-2506.
|
15 |
ZHANG Y, GAN Z, LAWRENCE C. Generating Text via Adversarial Training[C]//Advances in Neural Information Processing Systems. Barcelona, Spain: MIT Press, 2016.
|
16 |
BACHMAN P, PRECUP D. Data generation as sequential decision making[C]//Advances in Neural Information Processing Systems. Montreal, Canada: MIT Press, 2015: 3249-3257.
|
17 |
SUTTON R S, MCALLESTER D A, SINGH S P, et al. Policy gradient methods for reinforcement learning with function approximation[C]//Advances in Neural Information Processing Systems. Denver, USA: MIT Press, 2000.
|
18 |
YU Lantao, ZHANG Weinan, WANG Jun, et al. Seqgan: sequence generative adversarial nets with policy gradient[C]//AAAI Conference on Artificial Intelligence. San Francisco, USA: AAAI, 2017.
|
19 |
KRAUSE J, JOHNSON J, KRISHNA R, et al. A hierarchical approach for generating descriptive image paragraphs[C]//Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 317-325.
|
20 |
VESELY K, GHOSHAL A, BURGET L, et al. Sequence-discriminative training of deep neural networks[C]//Interspeech. Lyon, France: IEEE, 2013: 2345-2349.
|
21 |
KIM Y. Convolutional neural networks for sentence classification[C]//Empirical Methods in Natural Language Processing. Doha, Qatar: ACL, 2014: 1746-1751.
|
22 |
LAI Siwei, XU Liheng, LIU Kang, et al. Recurrent convolutional neural networks for text classification[C]//29th AAAI Conference on Artificial Intelligence. Austin Texas, USA: AAAI, 2015.
|
23 |
DEMNER-FUSHMAN D , KOHLI M D , ROSENMAN M B , et al. Preparing a collection of radiology examinations for distribution and retrieval[J]. Journal of the American Medical Informatics Association, 2016, 23 (2): 304- 310.
|
24 |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C]//Computer Visual on and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778.
|
25 |
DONAHUE J, ANNE HENDRICKS L, GUADARRAMA S, et al. Long-term recurrent convolutional networks for visual recognition and description[C]//Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015.
|
26 |
PAPINENI K, ROUKOS S, WARD T, et al. BLEU: a method for automatic evaluation of machine translation[C]// Proceedings of the 40th Annual Meeting on Association for Computational Linguistics. Grenoble, France: ACL, 2002.
|
27 |
DENKOWSKI M, LAVIE A. Meteor universal: language specific translation evaluation for any target language[C]// Proceedings of the 9th Workshop on Statistical Machine Translation. Baltimore, USA: ACL, 2014: 376-380.
|
28 |
CHIN-YEW L. Rouge: a package for automatic evaluation of summaries[C]//Proceedings of the 42th Annual Meeting on Association for Computational Linguistics. Barcelona, Spain: ACL, 2004: 74-81.
|
29 |
VEDANTAM R, LAWRENCE Z C, PARIKH D. Cider: consensus-based image description evaluation[C]//Computer Vision and Pattern Recognition. Boston, USA: IEEE, 2015: 4566-4575.
|