Journal of Shandong University(Engineering Science) ›› 2020, Vol. 50 ›› Issue (4): 22-27.doi: 10.6040/j.issn.1672-3961.0.2019.416
ZHAO Ningning, TANG Xuesong*, ZHAO Mingbo
CLC Number:
[1] ZHONG Y F, FFENG F, ZHANG L P. Large patch convolutional neural networks for the scene classification of high spatial resolution imagery[J]. Journal of Applied Remote Sensing, 2016, 10(2): 025006. [2] MASSON G, YANG D, et al. Version and vergence eye movements in humans: open-loop dynamics determined by monocular rather than binocular image speed[J]. Vision Research, 2002, 42(26): 2853-2867. [3] SHOTTON J, FITZGIBBON A, COOK M, et al. Real-time human pose recognition in parts from single depth images[J]. Communications of the ACM, 2013, 56(1): 116-124. [4] KANEKO A M, YAMAMOTO K. Two-view monocular depth estimation by optic-flow-weighted fusion[J]. IEEE Robotics and Automation Letters, 2019, 4(2): 830-837. [5] AURISANO A, RADOVIC A, ROCCO D, et al. A convolutional neural network neutrino event classifier[J]. Journal of Instrumentation, 2016, 11(9): P09001. [6] LIU F, SHEN C, LIN G. Deep convolutional neural fields for depth estimation from a single image[C] //Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Computer Society, 2015: 5162-5170. [7] BO L, DAI Y, HE M. Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference[J]. Pattern Recognition, 2017, 83: 328-339. [8] GRIGOREV A, JIANG F, RHO S, et al. Depth estimation from single monocular images using deep hybrid network[J]. Multimedia Tools and Applications, 2017, 76(18): 18585-18604. [9] DAN X, RICCI E, OUYANG W, et al. Monocular depth estimation using multi-scale continuous CRFs as sequential deep networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2019, 41(6): 1426-1440. [10] LI J, KLEIN R, YAO A, et al. A two-streamed network for estimating fine-scaled depth maps from single RGB images[J]. Computer Vision and Image Understanding, 2019, 186:25-36. [11] WANG X, HOU C, PU L, et al. A depth estimating method from a single image using FoE CRF[J]. Multimedia Tools & Applications, 2015, 74(21): 9491-9506. [12] XU H, JIANG M, LI F. Depth estimation algorithm based on data-driven approach and depth cues for stereo conversion in three-dimensional displays[J]. Optical Engineering, 2016, 55(12): 12106-1-12106-11. [13] LI B, DAI Y, HE M. Monocular depth estimation with hierarchical fusion of dilated CNNs and soft-weighted-sum inference[J]. Pattern Recognition, 2018, 83: 328-339. [14] CHEN L, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computer Science, 2018, 40(4): 357-361. [15] CAO Y, SHEN C, SHEN H. Exploiting depth from single monocular images for object detection and semantic segmentation[J]. IEEE Transactions on Image Processing, 2017, 26(2): 836-846. [16] CAO Y, WU Z, SHEN C.Estimating depth from monocular images as classification using deep fully convolutional residual Networks[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2016, 38(10): 1-11. [17] CHOI S, MIN D, HAM B, et al. Depth analogy: data-driven approach for single image depth estimation using gradient samples[J]. IEEE Transactions on Image Processing, 2015, 24(12): 5953-5966. [18] QIN H, LI X, WANG Y, et al. Depth estimation by parameter transfer with a lightweight model for single still images[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2017, 27(4): 748-759. [19] 覃勋辉,马戎.一种基于梯度的直线段检测算法[J].光子学报, 2012,41(2):205-209. RONG X, MA R. A line segments detection algorithm based on grad[J]. Photonics Journal, 2012, 41(2): 205-209. [20] GIOI R, MOREL J,et al. LSD: a fast line segment detector with a false detection control[J]. IEEE Transactions on Software Engineering, 2010, 32(4): 722-732. [21] PATON K. Line detection by local methods[J]. Computer Graphics and Image Processing, 1979, 9(4): 316-332. [22] BACON J, KING-SMITH P E. The detection of line segments[J]. Perception, 1977, 6(2): 125-131. |
[1] | WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59. |
|