Journal of Shandong University(Engineering Science) ›› 2019, Vol. 49 ›› Issue (6): 113-118.doi: 10.6040/j.issn.1672-3961.0.2019.317

• Mechanical, Energy and Power Engineering • Previous Articles     Next Articles

Analysis of factors affecting heat transfer of double U-shaped buried tubes based on TRNSYS

Tao LIU(),Ye TIAN,Yongzhi MA*()   

  1. College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266022, Shandong, China
  • Received:2019-06-19 Online:2019-12-20 Published:2019-12-17
  • Contact: Yongzhi MA E-mail:949090356@qq.com;hiking@126.com

Abstract:

Because the horizontal buried tubes covered a large area, the heat transfer effect was poor, and the initial investment of the vertical buried tubes was high, the construction was difficult. A transient real-time simulation model of double U-shaped buried tubes heat exchanger was established with TRNSYS software. The factors, which could affect the heat transfer capacity of double U-shaped buried tubes heat exchanger, including the number and the spaceing of holes, and the depth of the buried tubes were analyzed under the condition of unique variable. The simulation experiment results showed that the heat transfer effect of buried tubes could be improved by increasing the number of holes, deepening drilling depth and increasing the spacing of the holes. It provided an analytical basis for the balance between the heat transfer effect of the buried tubes and the construction difficulty.

Key words: double U-shaped buried tube heat exchanger, number of holes, hole depth, hole spacing, outlet water temperature of buried tubes

CLC Number: 

  • TU83

Fig.1

Ground source heat pump unit"

Table 1

Ground pipe parameter setting"

水平管埋深/m U型管外径/m U型管内径/m 管中心间距/m 钻孔半径/m U型管类型 设计温度/℃ 土壤初始温度/℃ 埋管热导率/
(kJ·(h·m·K)-1)
参考流量/
(kg·h-1)
回填材料热导率/
(kJ·(h·m·K)-1)
流体比热容/
(kJ·(kg·K)-1)
土壤传热系数/
(kJ·(h·m·K)-1)
土壤比热容/
(kJ·(m3·K)-1)
2.5 0.034 0.028 0.05 0.075 双U 7 13 1.512 11 910 4.68 4.19 3.96 2 200

Fig.2

Double U-type buried tube heat exchanger"

Fig.3

Simulation model results"

Fig.4

Effect of 40 holes on the outlet temperature of buried tube"

Fig.5

Effect of 80 holes on the outlet temperature of buried tube"

Fig.6

Effect of 120 holes on the outlet temperature of buried tube"

Fig.7

Effect of 70 m hole deep on the outlet temperature of buried tube"

Fig.8

Effect of 100 m hole deep on the outlet temperature of buried tube"

Fig.9

Effect of 130 m hole deep on the outlet temperature of buried tube"

Fig.10

Effect of 3 m tube spacing on ground tube outlet temperature"

Fig.11

Effect of 5 m tube spacing on ground tube outlet temperature"

Fig.12

Effect of 7 m tube spacing on ground tube outlet temperature"

1 尹畅昱.不同分层地质结构下地源热泵竖直双U埋管换热影响研究[D].重庆:重庆大学, 2014.
YIN Changyu. Study on the influence of vertical double-U buried heat transfer of ground source heat pump under different stratified geological structures[D]. Chongqing: Chongqing University, 2014.
2 吴盛威.地埋管换热器出水温度影响因素及与土壤温度的关系研究[D].天津:天津大学, 2016.
WU Shengwei. Influencing factors of water temperature in ground heat exchanger and its relationship with soil temperature[D].Tianjin: Tianjin University, 2016.
3 汪辰.地埋管换热器强化传热机理及特性研究[D].杭州:浙江理工大学, 2018.
WANG Chen. Study on heat transfer mechanism and characteristics of buried tube heat exchanger[D]. Hangzhou: Zhejiang Sci-Tech University, 2018.
4 尚少文, 潘欣, 徐颖, 等. 土壤比热容对地埋管换热器周围土壤温度影响的模拟[J]. 沈阳建筑大学学报(自然科学版), 2019, 35 (2): 379- 384.
SHANG Shaowen , PAN Xin , XU Ying , et al. Simulation of the influence of soil specific heat capacity on soil temperature around ground heat exchanger[J]. Journal of Shenyang Jianzhu University(Natural Science), 2019, 35 (2): 379- 384.
5 MEI V C . Theoretieal heat pump ground coil analysis with variable ground four-field boundary conditions[J]. AICHE Journal, 1986, 32 (7): 662- 667.
6 CUI Wenzhi , ZHOU Shiyu , LIU Xiangyang . Optimization of design and operation parameters for hybrid ground-source heat pump assisted with cooling tower[J]. Energy and Buildings, 2015, 99, 253- 262.
doi: 10.1016/j.enbuild.2015.04.034
7 YAVUZTURK C , SPITLER JD . A short timestep response factor model for vertical ground loop heap exchangers[J]. ASHRAE Transactions, 1999, 105 (2): 475- 485.
8 邵珠坤. 单U型地埋管换热影响因素分析[J]. 节能, 2017, 36 (12): 31- 33.
SHAO Zhukun . Analysis of factors affecting heat transfer of single U-shaped buried pipe[J]. Energy Conservation, 2017, 36 (12): 31- 33.
9 HAN Chanjuan , YU Bill . Sensitivity analysis of a vertical Geothermal heat pump system[J]. Applied Energy, 2016, 170, 148- 160.
doi: 10.1016/j.apenergy.2016.02.085
10 CARLI M D , FIORENZATO S , ZARRELLAA . Performance of heat pumps with direct expa-nsion in vertical ground heat exchangers in heating mode[J]. Energy Conversion & Management, 2015, 95, 120- 130.
11 LEE JS , SONG KS , AHN JH , et al. Comparison on the transient cooling performances of hybrid ground source heat pumps with various flow loop configurations[J]. Energy, 2015, 82, 678- 685.
doi: 10.1016/j.energy.2015.01.076
12 蒋绿林, 张亮, 侯亚祥, 等. 运行模式对土壤源太阳能热泵垂直埋管换热影响的研究[J]. 可再生能源, 2016, 34 (3): 347- 352.
JIANG Lulin , ZHANG Liang , HOU Yaxiang , et al. Study on the effect of operation mode on vertical buried heat transfer of soil source solar heat pump[J]. Renewable Energy, 2016, 34 (3): 347- 352.
13 尚少文, 朱天然, 刘兵红, 等. 基于TRNS-YS的地埋管换热器温度场变化规律研究[J]. 沈阳建筑大学学报(自然科学版), 2017, 33 (4): 744- 750.
SHANG Shaowen , ZHU Tianran , LIU Binghong , et al. Study on the variation of temperature field of buried tube heat exchanger based on TRNS-YS[J]. Journal of Shenyang Jianzhu University Natural Science, 2017, 33 (4): 744- 750.
14 FIDORW N , SZULGOWSKA-ZGRZYWA M . The influence of the ground coupled heat pump's labor on the ground temperature in the boreholes-study based on experimental data[J]. Applied Thermal Engineering, 2015, 82, 237- 245.
doi: 10.1016/j.applthermaleng.2015.02.035
15 NAILI N , ATTAR I , HAZAMI M , et al. First in situ operation performance test of ground source heat pump in Tunisia[J]. Energy Conversion and Management, 2013, 75, 292- 301.
doi: 10.1016/j.enconman.2013.06.014
16 赵国君.土壤源热泵地埋管换热器周围土壤温度场模拟与实验研究[D].北京:北京建筑大学, 2013.
ZHAO Guojun. Simulation and experimental study on soil temperature field around ground heat pump buried heat exchanger[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2013.
17 KWON O , BAE K J , PARK C . Cooling characteristics of ground source heat pump with heat exchange methods[J]. Renewable Energy, 2014, 71, 651- 657.
doi: 10.1016/j.renene.2014.06.026
18 梁意艺, 刘向龙. 土壤源热泵地埋管传热与机组性能的实验研究[J]. 制冷与空调, 2012, 26 (5): 500- 503.
doi: 10.3969/j.issn.1671-6612.2012.05.019
LIANG Yiyi , LIU Xianglong . Experimental study on heat transfer and unit performance of buried pipes in soil source heat pump[J]. Refrigeration and Air Conditioning, 2012, 26 (5): 500- 503.
doi: 10.3969/j.issn.1671-6612.2012.05.019
19 刘斯佳, 杨晓宇, 张山. 竖直埋管地源热泵地下温度场分析[J]. 区域供热, 2019, (2): 138- 141.
LIU Sijia , YANG Xiaoyu , ZHANG Shan . Analysis of underground temperature field of ground source heat pump with vertical buried pipe[J]. District Heating, 2019, (2): 138- 141.
20 韩斯东.地埋管地源热泵浅层土壤分层热物性测试实验及计算研究[D].内蒙古:内蒙古科技大学, 2015.
HAN Sidong.Experimental experiment and calculation of thermal properties of shallow soil layer in ground-source heat pump with buried pipe[D]. Inner Mongolia: Inner Mongolia University of Science and Technology, 2015.
21 杨少刚.基于TRNSYS地埋管地源热泵变流量系统仿真研究[D].济南:山东建筑大学, 2016.
YANG Shaogang. Study on the variable flow system of ground source heat pump based on TRNSYS[D]. Jinan: Shandong Jianzhu University, 2016.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] JI Tao,GAO Xu/sup>,SUN Tong-jing,XUE Yong-duan/sup>,XU Bing-yin/sup> . Characteristic analysis of fault generated traveling waves in 10 Kv automatic blocking and continuous power transmission lines[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2006, 36(2): 111 -116 .
[2] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[3] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[4] MENG Jian, LI Yibin, LI Bin. Bound gait controlling method of quadruped robot[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(3): 28 -34 .
[5] ZHENG Hong-liang,KONG Fan-li,TIAN Xue-lei . The effect of composition on the latent heat of solidification for the Al-Cu alloy[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(2): 10 -12 .
[6] WANG Kai,SUN Feng-zhong,ZHAO Yuan-bin,GAO Ming,GAO Shan . Mathematical model and numerical simulation of the air inlet flowfield of a natural-draft cooling tower[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(1): 13 -17 .
[7] MA Qi-Hua, WANG Yi-Tai. Application of the high density resistivity method to surrvey huge empty water  outside of a coal mine[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(4): 107 -111 .
[8] DONG Cheng-xi,WU De-wei,HE Jing . Combat effectiveness evaluation method of satellite navigation
system based on rough fuzzy sets
[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(4): 32 -36 .
[9] HUANG Jinchao. A new method for muti-objects image segmentation based on faster region proposal networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(4): 20 -26 .
[10] WANG Mei,LI Hesheng,LI Musen,TIAN Bin, . Thermal stability comparison of the IIb type and the Ib type diamond[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 41 -43 .