Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 101-108.doi: 10.6040/j.issn.1672-3961.0.2018.289

• Electrical Engineering • Previous Articles     Next Articles

Wind and PV installed capacity optimization with hybrid uncertainty of renewable energy

Shizhan SONG1(),Chuanyong WANG1,Wenwen KANG1,Jian ZHANG1,Honghua YAN2,*(),Peng LI2   

  1. 1. State Grid Zaozhuang Power Supply Company, Zaozhuang 277800, Shandong, China
    2. Shandong Green Power Tech Co., Ltd., Jinan 250061, Shandong, China
  • Received:2018-07-12 Online:2018-12-20 Published:2018-12-26
  • Contact: Honghua YAN E-mail:15266172927@163.com;sdgrtech@163.com
  • Supported by:
    国网山东省电力公司科技项目(2017A82)

Abstract:

By mining the daily and monthly characteristics of renewable energy, a time series model of wind and PV was presented. Through the Monte Carlo method, several wind and PV time series were produced to depict the hybrid uncertainty of the wind and PV. Based on the hybrid uncertainty constraints of wind and PV, power balance constraint and allowed wind and PV curtailment rate, etc., the profit maximum model of renewable was proposed to optimize the installed capacities of wind power and PV, to ensure the operation economics of wind power and photovoltaic system. The simulations showed that under different allowed wind and PV curtailment rates, the optimal installation capacities of wind power and PV varied significantly. Due to the unique daily characteristics and high installation cost of PV system, the higher total revenue of PV could be achieved with lower curtailment rate and installation capacity of PV systems.

Key words: renewable energy, wind/PV time series model, wind/PV curtailment, optimizing planning

CLC Number: 

  • TM615

Fig.1

Monthly ratios of wind energy, PV and loads"

Fig.2

Wind theoretical power normalized data"

Fig.3

PV theoretical power normalized data"

Table 1

PV capacity, generation and curtailment ration under different scenarios"

限电率/% 风电装机/
MW
光伏装机/
MW
风电理论电量/(GWh) 光伏理论电量/
(GWh)
风电实发电量/
(GWh)
光伏实发电量/
(GWh)
总收益/
万元
0 34.77 4.62 64.90 4.75 64.90 4.75 3 362
1 43.00 24.96 80.25 25.65 79.19 25.65 5 008
5 54.68 37.18 102.05 38.21 95.04 38.21 6 303
10 66.53 45.60 124.17 46.85 107.07 46.85 7 197
15 78.73 51.30 146.95 52.71 117.05 52.66 7 836
30 123.26 58.83 230.05 60.45 143.47 59.88 8 942
40 164.91 58.90 307.79 60.52 161.04 59.94 9 280
45 192.85 58.87 359.95 60.49 169.84 59.92 9 334
50 221.87 58.16 414.10 59.76 177.66 59.27 9 288
60 305.00 55.70 569.26 57.23 193.63 56.97 8 771
70 440.50 50.66 822.15 52.06 210.24 52.02 7 331

Fig.4

Installed capacities of wind and PV"

Fig.5

Wind and PV generation"

Fig.6

Wind and PV curtailment rates"

Fig.7

Wind and PV generation profits"

Table 2

Wind and PV installed capacity under different installed cost and generation profit"

序号 风电装机成本/(元/kW) 风电电价/(元/kWh) 光伏装机成本/(元/kW) 光伏电价/(元/kWh) 总收益/万元 风电装机/MW 光伏装机/MW
1 3 000 0.57 9 000 0.85 10 416 229.94 61.33
2 4 000 0.57 10 000 0.85 9 334 192.85 58.87
3 5 000 0.57 12 000 0.85 8 180 170.56 48.67
4 3 000 0.40 9 000 0.65 6 265 186.37 53.55
5 4 000 0.40 10 000 0.75 5 969 146.97 64.56
6 5 000 0.40 12 000 0.85 5 566 122.50 66.43
7 3 000 0.57 9 000 0.65 9 732 272.54 0
8 4 000 0.57 10 000 0.75 8 834 207.64 34.70
9 5 000 0.57 12 000 0.85 8 180 170.56 48.67

Table 3

Maximum integration capacity only with PV generation"

序号 光伏装机成本/(元/kW) 光伏电价/(元/kWh) 总收益/万元 光伏装机/MW
1 9 000 0.85 3 736 102.24
2 10 000 0.85 3 340 95.98
3 12 000 0.85 2 615 85.64
4 9 000 0.75 2 880 94.69
5 10 000 0.75 2 513 88.72
6 12 000 0.75 1 843 78.76
7 9 000 0.65 2 061 86.83
8 10 000 0.65 1 726 81.21
9 12 000 0.65 1 126 69.15
1 舒印彪, 张智刚, 郭剑波, 等. 新能源消纳关键因素分析及解决措施研究[J]. 中国电机工程学报, 2017, 37 (1): 1- 9.
SHU Yinbiao , ZHANG Zhigang , GUO Jianbo , et al. Study on key factors and solution of renewable energy accommodation[J]. Proceedings of the CSEE, 2017, 37 (1): 1- 9.
2 国家发展和改革委员会.中国可再生能源发展路线图2050[R].北京:国家发展和改革委员会, 2014.
3 张正陵.国家电网2015年新能源并网运行情况报告[R].北京:国家电力调度控制中心, 2016.
4 XING Haijun , CHENG Haozhong , ZHANG Yi , et al. Active distribution network expansion planning integrating dispersed energy storage systems[J]. IET Generation Transmission & Distribution, 2016, 10 (3): 638- 644.
5 刘洪, 范博宇, 唐翀, 等. 基于博弈论的主动配电网扩展规划与光储选址定容交替优化[J]. 电力系统自动化, 2017, 41 (23): 38- 45, 116.
doi: 10.7500/AEPS20170118013
LIU Hong , FAN Boyu , TANG Chong , et al. Game theory based alternate optimization between expansion planning of active distribution system and siting and sizing of photovoltaic power and storage[J]. Automation of Electric Power Systems, 2017, 41 (23): 38- 45, 116.
doi: 10.7500/AEPS20170118013
6 HEDAYATI H , NAVAVINIAKI S A , AKBARIMAJD A . A Method for placement of DG units in distribution network[J]. IEEE Transactions on Power Delivery, 2008, 3 (3): 1620- 1628.
7 ZHANG Jietan, PANG Shun, TIAN Haiqing, et al. Siting and sizing of distributed wind generation under active management mode[C]//International Conference on Power System Technology (POWERCON). Hangzhou: IEEE, 2010: 1-8.
8 SHENG Siqing, TIAN Ying, ZOU Yuan, et al. A simplified PSO algorithm for sizing and siting distributed generation[C]//2011 International Conference on Materials for Renewable Energy & Environment (ICMREE). Shanghai: IEEE, 2011: 1529-1533.
9 曹阳, 李鹏, 袁越, 等. 基于时序仿真的新能源消纳能力分析及其低碳效益评估[J]. 电力系统自动化, 2014, 38 (17): 60- 66.
doi: 10.7500/AEPS20140329002
CAO Yang , LI Peng , YUAN Yue , et al. Analysis on accommodation capability of renewable energy and assessment on low-carbon benefits based on time sequence simulation[J]. Automation of Electric Power Systems, 2014, 38 (17): 60- 66.
doi: 10.7500/AEPS20140329002
10 魏磊, 姜宁, 于广亮, 等. 宁夏电力系统接纳新能源能力研究[J]. 电网技术, 2010, 34 (11): 176- 181.
WEI Lei , JIANG Ning , YU Guangliang , et al. Research on ningxia power grid's ability of admitting new energy resources[J]. Power System Technology, 2010, 34 (11): 176- 181.
11 孙荣富, 张涛, 梁吉. 电网接纳风电能力的评估及应用[J]. 电力系统自动化, 2011, 35 (4): 70- 76.
SUN Rongfu , ZHANG Tao , LIANG Ji . Evaluation and application of wind power integration capacity in power grid[J]. Automation of Electric Power Systems, 2011, 35 (4): 70- 76.
12 DOBAKHSHARI A S , FOTUHI-FIRUZABAD M . A reliability model of large wind farms for power system adequacy studies[J]. IEEE Transactions on Energy Conversion, 2009, 24 (3): 792- 801.
doi: 10.1109/TEC.2009.2025332
13 BUENO C , CARTA J A . Technical-economic analysis of wind-powered pumped hydrostorage systems Part I: model development[J]. Solar Energy, 2005, 78 (3): 382- 395.
doi: 10.1016/j.solener.2004.08.006
14 李驰.基于波动特性的新能源出力时间序列建模方法研究[D].北京:中国电力科学研究院, 2015.
LI chi. Study on the Modeling Method of New energy power time series based on fluctuation characteristics[D]. Beijing: China Electric Power Research Institute, 2015.
15 董存, 李明节, 范高锋, 等. 基于时序生产模拟的新能源年度消纳能力计算方法及其应用[J]. 中国电力, 2015, 48 (12): 166- 172.
DONG Cun , LI Mingjie , FAN Gaofeng , et al. Research and application of renewable energy accommodation capability evaluation based on time series production simulation[J]. Electric Power, 2015, 48 (12): 166- 172.
16 张军, 许晓艳, 黄永宁, 等. 基于时序生产模拟仿真的宁夏电网风光优化配比研究[J]. 电力系统保护与控制, 2014, 42 (19): 81- 86.
doi: 10.7667/j.issn.1674-3415.2014.19.013
ZHANG Jun , XU Xiaoyan , HUANG Yongning , et al. Optimal proportion study of wind and PV capacity in Ningxia Power Grid based on time sequence simulation[J]. Power System Protection and Control, 2014, 42 (19): 81- 86.
doi: 10.7667/j.issn.1674-3415.2014.19.013
17 BANAKAR H , LUO C , BOON C . Impacts of wind power minute-to-minute variations on power system operation[J]. IEEE Transactions on Power Systems, 2008, 23 (1): 150- 160.
doi: 10.1109/TPWRS.2007.913298
18 WU H , SHAHIDEPHOUR M , LI Z , et al. Chance-constrained day-ahead scheduling in stochastic power system operation[J]. IEEE Transactions on Power Systems, 2014, 29 (4): 1583- 1591.
doi: 10.1109/TPWRS.2013.2296438
[1] Shizhan SONG,Chuanyong WANG,Wenwen KANG,Jian ZHANG,Honghua YAN,Peng LI. PV installed capacity planning for power distribution network based on time series production simulation [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 131-136.
[2] ZHANG Hengxu, SHI Xiaohan, LIU Yutian, YANG Dong. Support of the renewable energy base in northwest of China on the construction of global energy interconnection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 96-102.
[3] GAO Hou-Lei, TIAN Jia, DU Jiang, WU Zhi-Gang, LIU Chu-Min. Distributed generation—new technology in energy development [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 106-110.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[6] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[8] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[9] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .
[10] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .