Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 67-73.doi: 10.6040/j.issn.1672-3961.0.2018.192

• Machine Learning & Data Mining • Previous Articles     Next Articles

Person re-identification based on random erasing pedestrian alignmentnetwork method

Cui JIN(),Hongyuan WANG*(),Shoubing CHEN   

  1. College of Information Science and Engineering, Changzhou University, Jiangsu 213164, Changzhou, China
  • Received:2018-07-18 Online:2018-12-20 Published:2018-12-26
  • Contact: Hongyuan WANG E-mail:807214072@qq.com;hywang@cczu.edu.cn
  • Supported by:
    国家自然科学基金资助项目(61572085)

Abstract:

The detected pedestrian images were prone to misalignment and the depth network was prone to over-fitting phenomenon. Pedestrian datasets were preprocessed using pedestrian alignment networks and random erasing data enhancements. It made the images generating different levels of occlusion, and corrected the misalignment in the images by the spatial transformation network layer in the affine estimation branch. It cropped the large part of the background and filled in the missing part of the pedestrian images, which reduced the phenomenon of network over-fitting and improved the generalization ability of the network. The tests were performed on the Market1501, DuckMTMC-reID and CUHK03 datasets, which showed the value of rank-1 reached approximately 84%. Compared the methods of randomly erasing pedestrian alignment network with other methods, it was found that the test results of pedestrian recognition method for randomly erasing pedestrian alignment network were better.

Key words: person re-identification, pedestrian alignment network, data enhancement, overfitting, image misalignment

CLC Number: 

  • TP391

Fig.1

Preprocessing effect diagram"

Fig.2

Comparison of pedestrian images before and after aligning network"

Fig.3

Enhanced pedestrian alignment network diagram by random erasing data method"

Table 1

Experimental results of basic branch"

%
方法 Market1501 DukeMTMC-reID CUHK03(labeled) CUHK03(detected)
rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP
A 80.17 91.69 59.14 65.20 78.88 44.99 31.14 52.00 29.80 30.50 51.07 29.04
B 81.26 92.35 60.02 69.93 80.67 52.49 32.22 54.03 31.45 31.56 52.36 30.70

Table 2

Experimental results of alignment branch"

%
方法 Market1501 DukeMTMC-reID CUHK03(labeled) CUHK03(detected)
rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP
C 79.01 90.86 58.27 68.36 81.37 47.14 35.29 53.64 32.90 34.14 54.50 31.71
D 81.15 92.77 61.79 66.83 81.66 48.34 37.34 55.58 33.44 35.26 54.68 32.60

Table 3

Experimental results of random erasing pedestrian alignment network and pedestrian alignment network"

%
方法 Market1501 DukeMTMC-reID CUHK03(labeled) CUHK03(detected)
rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP rank-1 rank-5 mAP
E 82.81 93.53 63.35 68.36 81.37 51.51 36.86 56.86 35.03 36.29 55.51 34.05
F 84.17 95.34 65.79 71.50 81.66 55.02 38.77 58.69 37.23 38.46 57.73 36.20

Table 4

Experimental results comparison of different methodswith Market1501 dataset"

%
方法 rank-1 mAP
DADM 39.40 19.60
FisherNet 48.15 29.94
BoW+KISSME 44.42 20.76
ReRank 77.10 63.60
SVDnet 80.50 55.90
Transfer 83.70 65.50
GAN 83.97 66.10
Ours 84.17 65.79

Table 5

Experimental results comparison of differentmethods with DukeMTMC-reID dataset"

%
方法 rank-1 mAP
LOMO+XQDA 30.75 17.04
BoW+KISSME 25.13 12.17
GAN 67.68 47.13
APR 70.69 51.88
ReRank 71.06 52.40
SVDnet 71.32 53.90
Ours 71.50 55.02

Table 6

Experimental results comparison of differentmethods with CUHK03 dataset"

%
方法 labeled detected
rank-1 mAP rank-1 mAP
LOMO+XQDA 14.80 13.60 12.80 11.50
Resnet50+XQDA 32.00 29.60 31.10 28.20
ReRank 63.50 68.27 64.12 69.26
SVDnet 67.86 72.54 68.63 73.31
Transfer 84.10 84.20
Ours 38.77 37.23 38.46 36.00
1 王金, 刘洁, 高常鑫, 等. 基于姿态对齐的行人重识别方法[J]. 控制理论与应用, 2017, 34 (6): 837- 842.
WANG Jin , LIU Jie , GAO Changxin , et al. Pedestrian re-identification method based on attitude alignment[J]. Control Theory & Applications, 2017, 34 (6): 837- 842.
2 杜久伦.多视图行人重识别算法研究与数据采集[D].济南:山东大学, 2017.
DU Jiulun. Research on multi-view pedestrian recognition algorithm and data acquisition[D]. Jinan: Shandong University, 2017.
3 黄新宇, 许娇龙, 郭纲, 等. 基于增强聚合通道特征的实时行人重识别[J]. 激光与光电子学进展, 2017, 54 (9): 119- 127.
HUANG Xinyu , XU Jiaolong , GUO Gang , et al. Real-time pedestrian re-identification based on enhanced aggregate channel characteristics[J]. Laser & Optoelectronics Progress, 2017, 54 (9): 119- 127.
4 张见威, 林文钊, 邱隆庆. 基于字典学习和Fisher判别稀疏表示的行人重识别方法[J]. 华南理工大学学报(自然科学版), 2017, 45 (7): 55- 62.
doi: 10.3969/j.issn.1000-565X.2017.07.008
ZHANG Jianwei , LIN Wenzhao , QIU Longqing . Pedestrian re-identification method based on dictionary learning and Fisher discriminant sparse representation[J]. Journal of South China University of Technology(Natural Science Edition), 2017, 45 (7): 55- 62.
doi: 10.3969/j.issn.1000-565X.2017.07.008
5 CHEN D , YUAN Z , WANG J , et al. Exemplar-guided similarity learning on polynomial kernel feature map for person re-identification[J]. International Journal of Computer Vision, 2017, 123 (3): 1- 23.
6 WANG X , ZHENG W S , LI X , et al. Cross-scenario transfer person reidentification[J]. IEEE Transactions on Circuits & Systems for Video Technology, 2016, 26 (8): 1447- 1460.
7 AHMED E, JONES M, MARKS T K. An improved deep learning architecture for person re-identification[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 3908-3916.
8 KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Proceedings of the International Conference on Neural Information Processing Systems. Lake Tahoe, Spain: [s.n.], 2012: 1097-1105.
9 ZHAO L, LI X, WANG J, et al. Deeply-learned part-aligned representations for person re-identification[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision(ICCV). Venice, Italy: IEEE Press, 2017: 3239-3248.
10 CHEN Y C , ZHU X , ZHENG W S , et al. Person re-identification by camera correlation aware feature augmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2018, 40 (2): 392- 408.
11 JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial transformer networks[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 2017-2025.
12 HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2015 IEEE Conf on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE Press, 2015: 770-778.
13 DING S , LIN L , WANG G , et al. Deep feature learning with relative distance comparison for person re-identification[J]. Pattern Recognition, 2015, 48 (10): 2993- 3003.
doi: 10.1016/j.patcog.2015.04.005
14 ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). Santiago, Chile: IEEE Press, 2015: 1116-1124.
15 LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re-identification[C]//Proceedings of the 2014 IEEE Computer Vision and Pattern Recognition(CVPR). Colombia, USA: IEEE Press, 2014: 152-159.
16 ZHENG Z, ZHENG L, YANG Y. Unlabeled samples generated by GAN improve the person re-identification baseline in vitro[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE Press, 2017: 3774-3782.
[1] CHEN Dawei, YAN Zhao*, LIU Haoyan. Overfitting phenomenon  of  the series of single value decomposition algorithms in rating prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(3): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] HU Tian-liang,LI Peng,ZHANG Cheng-rui,ZUO Yi . Design of a QEP decode counter based on VHDL[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 10 -13 .
[5] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[6] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[7] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[8] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[9] WANG Ru-gui,CAI Gan-wei . Sub-harmonic resonance analysis of 2-DOF controllable plane linkage mechanism electromechanical coupling system[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2008, 38(3): 58 -63 .
[10] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .