Journal of Shandong University(Engineering Science) ›› 2018, Vol. 48 ›› Issue (6): 27-36.doi: 10.6040/j.issn.1672-3961.0.2018.264
• Machine Learning & Data Mining • Previous Articles Next Articles
Hong CHEN(),Xiaofei YANG*(),Qing WAN,Yingcang MA
CLC Number:
1 | KONG X N , YU P S . GMLC: a multi-label feature selection framework for graph classification[J]. Knowledge & Information Systems, 2012, 31 (2): 281- 305. |
2 | OZONAT K, YOUNG D. Towards a universal marketplace over the web: statistical multi-label classification of service provider forms with simulated annealing[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 1295-1304. |
3 |
LIU W , POKHAREL P P , PRINCIPE J C . Correntropy: properties and applications in non-gaussian signal processing[J]. IEEE Transactions on Signal Processing, 2007, 55 (11): 5286- 5298.
doi: 10.1109/TSP.2007.896065 |
4 | 李素姝, 王士同, 李滔, 等. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47 (3): 34- 42. |
LI Sushu , WANG Shitong , LI Tao , et al. Feature selection method based on LS-SVM and fuzzy complement criterion[J]. Journal of Shandong University(Engineering Edition), 2017, 47 (3): 34- 42. | |
5 | HE R , ZHENG W S , HU B G . Maximum correntropy criterion for robust face recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33 (8): 1561- 1576. |
6 |
HE R , HU B G , ZHENG W S , et al. Robust principal component analysis based on maximum correntropy criterion[J]. IEEE Transactions on Image Processing, 2011, 20 (6): 1485- 1494.
doi: 10.1109/TIP.2010.2103949 |
7 | CHEN X B , YANG J , LIANG J , et al. Recursive robust least squares support vector regression based on maximum correntropy criterion[J]. Neurocomputing, 2012, 97 (1): 63- 73. |
8 |
LEE J , LIM H , KIM D W . Approximating mutual information for multi-label feature selection[J]. Electronics Letters, 2012, 48 (15): 929- 930.
doi: 10.1049/el.2012.1600 |
9 | ZHENG W S, WANG L, TAN T, et al. L2, 1 regularized correntropy for robust feature selection[J]. 2012, 157(10): 2504-2511. |
10 | 莫小勇, 潘志松, 邱俊洋, 等. 基于在线特征选择的网络流异常检测[J]. 山东大学学报(工学版), 2016, 46 (4): 21- 27. |
MO Xiaoyong , PAN Zhisong , QIU Junyang , et al. Network flow anomaly detection based on online feature selection[J]. Journal of Shandong University(Engineering Edition), 2017, 47 (3): 34- 42. | |
11 | NIE F P, HUANG H, CAI X, et al. Efficient and robust feature selection via joint L2, 1-norms minimization[C]//International Conference on Neural Information Processing Systems. Sydney, Australia: Curran Associates Inc, 2010: 1813-1821. |
12 | YANG Y, SHEN H T, MA Z, et al. L2, 1-norm regularized discriminative feature selection for unsupervised learning[C]//International Joint Conference on Artificial Intelligence. Menlo Park, USA: AAAI Press, 2011: 1589-1594. |
13 | BELKIN M , NIYOGI P . Laplacian eigenmaps and spectral techniques for embedding and clustering[J]. Advances in Neural Information Processing Systems, 2001, 14 (6): 585- 591. |
14 | GU Q Q, ZHOU J. Co-clustering on manifolds[C]//ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2009: 359-368. |
15 |
CHEN B D , XING L , WANG X , et al. Robust learning with kernel mean p-power error loss[J]. IEEE Transactions on Cybernetics, 2018, 48 (7): 2101- 2113.
doi: 10.1109/TCYB.2017.2727278 |
16 |
ZHANG M L , ZHOU Z H . ML-KNN: A lazy learning approach to multi-label learning[J]. Pattern Recognition, 2007, 40 (7): 2038- 2048.
doi: 10.1016/j.patcog.2006.12.019 |
17 |
BOUTELL M R , LUO J , SHEN X , et al. Learning multi-label scene classification[J]. Pattern Recognition, 2004, 37 (9): 1757- 1771.
doi: 10.1016/j.patcog.2004.03.009 |
18 | TROHIDIS K , TSOUMAKAS G , KALLIRIS G , et al. Multilabel classification of music into emotions[J]. Blood, 2008, 90 (9): 3438- 3443. |
19 | ELISSEEFF A, WESTON J. A kernel method for multi-labelled classification[C]//International Conference on Neural Information Processing Systems: Natural and Synthetic. Cambridge, USA: MIT Press, 2001: 681-687. |
20 | KLIMT B, YANG Y. The enron corpus: a new dataset for email classification research[C]//European Conference on Machine Learning. Berlin, Germany: Springer-Verlag, 2004: 217-226. |
21 |
LEE J , KIM D W . Feature selection for multi-label classification using multivariate mutual information[J]. Pattern Recognition Letters, 2013, 34 (3): 349- 357.
doi: 10.1016/j.patrec.2012.10.005 |
22 | LIN Y J , HU Q H , LIU J H , et al. Multi-label feature selection based on max-dependency and min-redundancy[J]. Neurocomputing, 2015, 168 (C): 92- 103. |
23 |
LEE J , KIM D W . Fast multi-label feature selection based on information-theoretic feature ranking[J]. Pattern Recognition, 2015, 48 (9): 2761- 2771.
doi: 10.1016/j.patcog.2015.04.009 |
24 | DUDA J. Supervised and unsupervised discretization of continuous features[C]//Twelfth International Conference on Machine Learning. Sydney, Australia: ICML, 1995: 194-202. |
[1] | Lianming MOU. Weighted k sub-convex-hull classifier based on adaptive feature selection [J]. Journal of Shandong University(Engineering Science), 2018, 48(5): 32-37. |
[2] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[3] | FANG Hao, LI Yun. Random undersampling and POSS method for software defect prediction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 15-21. |
[4] | MO Xiaoyong, PAN Zhisong, QIU Junyang, YU Yajun, JIANG Mingchu. Anomaly detection in network traffic based on online feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(4): 21-27. |
[5] | WEI Xiaomin, XU Bin, GUAN Jihong. Prediction of protein energy hot spots based on recursion feature elimination [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(2): 12-20. |
[6] | PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29. |
[7] | LI Guo-he1,2, YUE Xiang1,2, LI Xue3, WU Wei-jiang1,2, LI Hong-qi1. A method of feature selection for continuous attributes [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(6): 1-6. |
[8] | LI Xia1, WANG Lian-xi2, JIANG Sheng-yi1. Ensemble learning based feature selection for imbalanced problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(3): 7-11. |
[9] | YOU Ming-yu, CHEN Yan, LI Guo-zheng. Im-IG: A novel feature selection method for imbalanced problems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 123-128. |
[10] | YANG Ai-min1, ZHOU Yong-mei1, DENG He2, ZHOU Jian-feng3. Method of feature generation and selection for network traffic classification [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 1-7. |
[11] | TAN Tai-zhe, LIANG Ying-yi, LIU Fu-chun. Application of ReliefF feature evaluation in un-supervised manifold learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 66-71. |
[12] | DAI Ping, LI Ning*. A fast SVM-based feature selection method [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 60-65. |
[13] | WANG Fa-bo, XU Xin-shun. A new feature selection method for text categorization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(4): 8-11. |
|