JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (6): 7-12.doi: 10.6040/j.issn.1672-3961.0.2017.530
Previous Articles Next Articles
HAN Xueshan1, WANG Junxiong1, SUN Donglei2, LI Wenbo3, ZHANG Xinyi4, WEI Zhiqing5
CLC Number:
[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2007. [2] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社, 2015. [3] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14):3482-3494. TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494. [4] 王蓓蓓, 李义荣, 李扬, 等. 考虑响应不确定性的可中断负荷参与系统备用配置的协调优化[J]. 电力自动化设备,2015, 35(11):82-89. WANG Beibei, LI Yirong, LI Yang, et al. Optimal coordination between system reserve and interruptible loads with response uncertainty[J]. Electric Power Automation Equipment, 2015, 35(11):82-89. [5] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20):22-29. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20):23-29. [6] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29):5029-5040. XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29):5029-5040. [7] 叶瑰昀, 罗耀华, 刘勇, 等. 基于ARMA模型的电力系统负荷预测方法研究[J]. 信息技术, 2002(6):74-76. YE Guiyun, LUO Yaohua, LIU Yong, et al. Research on method of power system load forecasting based on ARMA model[J]. Information Technology, 2002(6):74-76. [8] 李明干, 孙健利, 刘沛. 基于卡尔曼滤波的电力系统短期负荷预测[J]. 继电器, 2006, 32(4):9-12. LI Minggan, SUN Jianli, LIU Pei. Short-term load forecast of power system based on Kalman filter[J]. Relay, 2006, 32(4):9-12. [9] DANESIIDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural network with fuzzy set-based classification for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(4):1386-1391. [10] 周佃民, 管晓宏, 孙婕, 等. 基于神经网络的电力系统短期负荷预测研究[J]. 电网技术, 2002, 26(2):10-13. ZHOU Dianmin, GUAN Xiaohong, SUN Jie, et al. A short-term load forecasting system based on BP artificial neural network[J]. Power System Technology, 2002, 26(2):10-13. [11] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6):55-59. LI Yuancheng, FANG Tingjian,YU Erkeng. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6):55-59. [12] 朱六璋, 袁林, 黄太贵. 短期负荷预测的实用数据挖掘模型[J]. 电力系统自动化, 2004, 28(3):49-52. ZHU Liuzhang, YUAN Lin, HUANG Taigui. Applied data mining models for short-term load forecasting[J]. Automation of Electric Power Systems, 2004, 28(3):49-52. [13] 牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26(18):6-12. NIU Dongxiao, GU Zhihong, XING Mian, et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26(18):6-12. [14] ABU-EL-MAGD M A, SINIIA N K. Two new algorithms for on-line modelling and forecasting of the load demand of a multinode power system[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7):3246-3253. [15] ABU-EL-MAGD M A, SINIIA N K. Univariate and multivariate time series techniques for modeling and forecasting short-term load demand[C] // IFAC Symposium on Theory and Application of Digital Control. New Delhi, India: IFAC Press, 1982: 329-334. [16] 韩力, 韩学山, 贠志皓, 等. 多节点超短期负荷预测方法[J]. 电力系统自动化, 2007, 31(21):30-34. HAN Li, HAN Xueshan, YUN Zhihao, et al. Method for ultra-short term multi-node load forecasting[J]. Automation of Electric Power Systems, 2007, 31(21):30-34. [17] 潘志远, 韩学山. 电网节点负荷的立体化预测方法[J]. 电力系统自动化, 2012, 36(21):47-52. PAN Zhiyuan, HAN Xueshan. A multi-dimensional method of nodal load forecasting in power grid[J]. Automation of Electric Power Systems, 2012, 36(21):47-52. [18] 牟涛, 康重庆, 夏清, 等. 电力系统多级负荷预测及其协调问题:(三)关联协调模型[J]. 电力系统自动化,2008, 32(9):20-24. MU Tao, KANG Chongqing, XIA Qing, et al. Power system multilevel load forecasting and coordinating: Part three correlative coordinating model[J]. Automation of Electric Power Systems, 2008, 32(9):20-24. [19] 薛禹胜, 陈宁, 王树民, 等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化, 2017, 41(10):161-169. XUE Yusheng, CHEN Ning, WANG Shumin, et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10):161-169. [20] 张林, 刘先珊, 阴和俊. 基于时间序列的支持向量机在负荷预测中的应用[J]. 电网技术, 2004, 28(19):38-41. ZHANG Lin, LIU Xianshan, YIN Hejun. Application of support vector machines based on time sequence in power system load forecasting[J]. Power System Technology, 2004, 28(10):38-41. |
[1] | YE Mingquan, GAO Lingyun, WAN Chunyuan. Gene expression data classification based on artificial bee colony and SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 10-16. |
[2] | ZHAO Yinghong, HE Xiao, ZHOU Donghua. Fault tolerant estimation for a class of networked systems with sensor faults [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 71-78. |
[3] | LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42. |
[4] | SUN Yibing, FU Minyue, WANG Bingchang, ZHANG Huanshui. Distributed state estimation algorithm for large-scale dynamic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 62-68. |
[5] | LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83. |
[6] | LIU Xiaoyong. A semi-supervised method based on tree kernel for relationship extraction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 22-26. |
[7] | HAO Qingbo, MU Shaomin, YIN Chuanhuan, CHANG Tengteng, CUI Wenbin. An algorithm of fast local support vector machine based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 13-18. |
[8] | LI Faquan, YANG Licai, YAN Hongbo. An emotion recognition method of multiphysiological information fusion based on PCA-SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 70-76. |
[9] | WANG Xiao-feng, SUI Ting-ting. Protein sequence identification based on improved TIGA-S4VM algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 1-6. |
[10] | WANG Hao, HUA Ji-xue, FAN Xiao-shi. Intrusion detection technology based on twin support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 53-56. |
[11] | LI Fu-gui1,2, HUANG Tian-qiang1,2*, SU Li-chao1,2, SU Wei-feng3. Heterologous video copy-move forgery detection by fusing multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 32-38. |
[12] | SHI Jun, ZHU Min. An optimization model for forecasting based on grey system and support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 7-11. |
[13] | LAN Yi-hua, REN Hao-zheng*, ZHANG Yong, ZHAO Xue-feng. An improved Kalman filter algorithm based on the “current” model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 12-17. |
[14] | ZHAO Jia-min, FENG Ai-min*, LIU Xue-jun. A new structured one-class support vector machine with local density embedding [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 13-18. |
[15] | PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29. |
|