JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (6): 7-12.doi: 10.6040/j.issn.1672-3961.0.2017.530

Previous Articles     Next Articles

Nodal load forecasting method considering spatial correlation and redundancy

HAN Xueshan1, WANG Junxiong1, SUN Donglei2, LI Wenbo3, ZHANG Xinyi4, WEI Zhiqing5   

  1. 1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education(Shandong University), Jinan 250061, Shandong, China;
    2. Economic &
    Technology Research Institute, State Grid Shandong Electric Power Company, Jinan 250021, Shandong, China;
    3. Electric Power Research Institute, State Grid Shandong Electric Power Company, Jinan 250003, Shandong, China;
    4. State Grid Qingdao Power Supply Company, Qingdao 266002, Shandong, China;
    5. State Grid Yantai Power Supply Company, Yantai 264001, Shandong, China
  • Received:2017-09-21 Online:2017-12-20 Published:2017-09-21

Abstract: Aiming at the problem that existing nodal load forecasting methods had no effective use for the nodes spatial correlation information, a new nodal load forecasting method with estimated correction characteristic was proposed, which had considered spatial correlation and redundancy. The correlation between the time dimension and the spatial dimension of the measurement information, and the spatial correlation and redundancy characteristics which combined these two dimensions were analyzed, and the mutual correction prediction principle was given. Two spatial correlations between state and measured values were analyzed deeply to establish measuring equations, which could characterise state features indirectly on the spatial correlation topology. Based on the analysis results, the forecasting model was established, and the forecasting method in which pre-prediction model was support vector machine was given, and advantages of the forecasting method were elaborated. Case studies demonstrated that compared with SVM model, the proposed 山 东 大 学 学 报 (工 学 版)第47卷 - 第6期韩学山,等:计及空间关联冗余的节点负荷预测方法 \=-method could effectively decrease forecasting errors and improve forecasting results.

Key words: support vector machine, redundant information, spatial correlation, state estimation, nodal load forecasting

CLC Number: 

  • TM315
[1] 康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2007.
[2] 刘振亚. 全球能源互联网[M]. 北京:中国电力出版社, 2015.
[3] 田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14):3482-3494. TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494.
[4] 王蓓蓓, 李义荣, 李扬, 等. 考虑响应不确定性的可中断负荷参与系统备用配置的协调优化[J]. 电力自动化设备,2015, 35(11):82-89. WANG Beibei, LI Yirong, LI Yang, et al. Optimal coordination between system reserve and interruptible loads with response uncertainty[J]. Electric Power Automation Equipment, 2015, 35(11):82-89.
[5] 赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20):22-29. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20):23-29.
[6] 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29):5029-5040. XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29):5029-5040.
[7] 叶瑰昀, 罗耀华, 刘勇, 等. 基于ARMA模型的电力系统负荷预测方法研究[J]. 信息技术, 2002(6):74-76. YE Guiyun, LUO Yaohua, LIU Yong, et al. Research on method of power system load forecasting based on ARMA model[J]. Information Technology, 2002(6):74-76.
[8] 李明干, 孙健利, 刘沛. 基于卡尔曼滤波的电力系统短期负荷预测[J]. 继电器, 2006, 32(4):9-12. LI Minggan, SUN Jianli, LIU Pei. Short-term load forecast of power system based on Kalman filter[J]. Relay, 2006, 32(4):9-12.
[9] DANESIIDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural network with fuzzy set-based classification for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(4):1386-1391.
[10] 周佃民, 管晓宏, 孙婕, 等. 基于神经网络的电力系统短期负荷预测研究[J]. 电网技术, 2002, 26(2):10-13. ZHOU Dianmin, GUAN Xiaohong, SUN Jie, et al. A short-term load forecasting system based on BP artificial neural network[J]. Power System Technology, 2002, 26(2):10-13.
[11] 李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6):55-59. LI Yuancheng, FANG Tingjian,YU Erkeng. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6):55-59.
[12] 朱六璋, 袁林, 黄太贵. 短期负荷预测的实用数据挖掘模型[J]. 电力系统自动化, 2004, 28(3):49-52. ZHU Liuzhang, YUAN Lin, HUANG Taigui. Applied data mining models for short-term load forecasting[J]. Automation of Electric Power Systems, 2004, 28(3):49-52.
[13] 牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26(18):6-12. NIU Dongxiao, GU Zhihong, XING Mian, et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26(18):6-12.
[14] ABU-EL-MAGD M A, SINIIA N K. Two new algorithms for on-line modelling and forecasting of the load demand of a multinode power system[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7):3246-3253.
[15] ABU-EL-MAGD M A, SINIIA N K. Univariate and multivariate time series techniques for modeling and forecasting short-term load demand[C] // IFAC Symposium on Theory and Application of Digital Control. New Delhi, India: IFAC Press, 1982: 329-334.
[16] 韩力, 韩学山, 贠志皓, 等. 多节点超短期负荷预测方法[J]. 电力系统自动化, 2007, 31(21):30-34. HAN Li, HAN Xueshan, YUN Zhihao, et al. Method for ultra-short term multi-node load forecasting[J]. Automation of Electric Power Systems, 2007, 31(21):30-34.
[17] 潘志远, 韩学山. 电网节点负荷的立体化预测方法[J]. 电力系统自动化, 2012, 36(21):47-52. PAN Zhiyuan, HAN Xueshan. A multi-dimensional method of nodal load forecasting in power grid[J]. Automation of Electric Power Systems, 2012, 36(21):47-52.
[18] 牟涛, 康重庆, 夏清, 等. 电力系统多级负荷预测及其协调问题:(三)关联协调模型[J]. 电力系统自动化,2008, 32(9):20-24. MU Tao, KANG Chongqing, XIA Qing, et al. Power system multilevel load forecasting and coordinating: Part three correlative coordinating model[J]. Automation of Electric Power Systems, 2008, 32(9):20-24.
[19] 薛禹胜, 陈宁, 王树民, 等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化, 2017, 41(10):161-169. XUE Yusheng, CHEN Ning, WANG Shumin, et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10):161-169.
[20] 张林, 刘先珊, 阴和俊. 基于时间序列的支持向量机在负荷预测中的应用[J]. 电网技术, 2004, 28(19):38-41. ZHANG Lin, LIU Xianshan, YIN Hejun. Application of support vector machines based on time sequence in power system load forecasting[J]. Power System Technology, 2004, 28(10):38-41.
[1] YE Mingquan, GAO Lingyun, WAN Chunyuan. Gene expression data classification based on artificial bee colony and SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 10-16.
[2] ZHAO Yinghong, HE Xiao, ZHOU Donghua. Fault tolerant estimation for a class of networked systems with sensor faults [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 71-78.
[3] LI Sushu, WANG Shitong, LI Tao. A feature selection method based on LS-SVM and fuzzy supplementary criterion [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(3): 34-42.
[4] SUN Yibing, FU Minyue, WANG Bingchang, ZHANG Huanshui. Distributed state estimation algorithm for large-scale dynamic systems [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 62-68.
[5] LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83.
[6] LIU Xiaoyong. A semi-supervised method based on tree kernel for relationship extraction [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(2): 22-26.
[7] HAO Qingbo, MU Shaomin, YIN Chuanhuan, CHANG Tengteng, CUI Wenbin. An algorithm of fast local support vector machine based on clustering [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(1): 13-18.
[8] LI Faquan, YANG Licai, YAN Hongbo. An emotion recognition method of multiphysiological information fusion based on PCA-SVM [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 70-76.
[9] WANG Xiao-feng, SUI Ting-ting. Protein sequence identification based on improved TIGA-S4VM algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(1): 1-6.
[10] WANG Hao, HUA Ji-xue, FAN Xiao-shi. Intrusion detection technology based on twin support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(6): 53-56.
[11] LI Fu-gui1,2, HUANG Tian-qiang1,2*, SU Li-chao1,2, SU Wei-feng3. Heterologous video copy-move forgery detection by fusing multiple features [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 32-38.
[12] SHI Jun, ZHU Min. An optimization model for forecasting based on grey system and support vector machine [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 7-11.
[13] LAN Yi-hua, REN Hao-zheng*, ZHANG Yong, ZHAO Xue-feng. An improved Kalman filter algorithm based on the “current” model [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(5): 12-17.
[14] ZHAO Jia-min, FENG Ai-min*, LIU Xue-jun. A new structured one-class support vector machine with local density embedding [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(4): 13-18.
[15] PAN Dong-yin, ZHU Fa, XU Sheng, YE Ning*. Feature selection of gene expression profiles of colon cancer [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2012, 42(2): 23-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!