JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2016, Vol. 46 ›› Issue (4): 117-124.doi: 10.6040/j.issn.1672-3961.0.2016.240

Previous Articles     Next Articles

Short circuit current limiting optimization of ultra-high voltage receiving-end power grid

ZHAO Kang1, WANG Chunyi2, YANG Dong3, LIU Yutian1*   

  1. 1. School of Electrical Eneering, Shandong University, Jinan 250061, Shandong, China;
    2. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China;
    3. Electric Power Research Institute, State Grid Shandong Electric Power Company, Jinan 250002, Shandong, China
  • Received:2016-07-01 Online:2016-08-20 Published:2016-07-01

Abstract: With the rapid construction of ultra-high voltage(UHV)power grid in China, the UHV transmission capacity was continuously improved, which could cause the exceeding of short circuit current(SCC), especially single-phase short circuit current(SSCC). The reasons of exceeding SSCC and dedicated limiting measure for SSCC were analyzed. Then, the limiting effectiveness and economy cost of different limiting measures were described as a unified form. An objective sensitity index was defined for limiting measure configuration object, which could be used to filter numerous configuration objects to avoid dimension disaster. With the economy cost and grid structure tightness as objective functions, a comprehensive limiting optimization model for ultra-high voltage receiving-end power system was founded. The self-adpative hybrid particle swarm optimization(PSO)algorithm was used to find the optimal limiting scheme. The case study of Jining region power system validated the effectiveness of the proposed optimization model.

Key words: ultra-high voltage grid, limiting sensitivity, limiting optimization, PSO algorithm, global energy internet, SCC

CLC Number: 

  • TM711
[1] 刘振亚. 全球能源互联网[M]. 北京: 中国电力出版社, 2015.
[2] 覃琴, 郭强, 周勤勇, 等. 国网 “十三五” 规划电网面临的安全稳定问题及对策[J]. 中国电力, 2015, 48(1): 25-32. QIN Qin, GUO Qiang, ZHOU Qingyong, et al. The security and stablity of power grid in 13th five-year planning and countermeasures[J]. Electric Power, 2015, 48(1):25-32.
[3] NAGATA M, TANAKA K, TANIGUCHI H. FCL location selection in large scale power system[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 2489-2494.
[4] SARMIENTO H G, CASTELLANOS R, PAMPIN G, et al. An example in controlling short circuit levels in a large metropolitan area[C] //Power Engineering Society General Meeting. Toronto: IEEE, 2003: 2399-2404.
[5] HONGESOMBUT K, MITANI Y, TSUJI K. Optimal location assignment and design of superconducting fault current limiters applied to loop power systems[J]. IEEE Transactions on Applied Superconductivity, 2003, 13(2): 1828-1831.
[6] KIM S Y, BAE I S, KIM J O. An optimal location for superconducting fault current limiter considering distribution reliability[C] //Power and Energy Society General Meeting. Minneapolis, U S A: IEEE, 2010: 1-5.
[7] TENG J H, LU C. Optimum fault current limiter placement with search space reduction technique[J]. Generation, Transmission & Distribution, IET, 2010, 4(4): 485-494.
[8] 张永康, 蔡泽祥, 李爱民, 等. 限制500 kV电网短路电流的网架调整优化算法[J]. 电力系统自动化, 2009, 33(22): 34-39. ZHANG Yongkang, CAI Zexiang, LI Aimin, et al. An optimization algorithm for short-circuit limitation of 500 kV power grid by adjusting power grid configuration[J]. Automation of Electric Power Systems, 2009, 33(22): 34-39.
[9] 胡文旺, 卫志农, 孙国强, 等. 基于灵敏度法的超导故障限流器的优化配置[J]. 电力系统自动化, 2012, 36(22): 62-67. HU Wenwang, WEI Zhinong, SUN Guoqiang, et al. Optimal allocation of superconducting fault limiters based on sensitivity method[J]. Automation of Electric Power Systems, 2012, 36(22): 62-67.
[10] 陈丽莉, 黄民翔, 张弘, 等. 电网限流措施的优化配置[J]. 电力系统自动化, 2009, 33(11): 38-42. CHEN Lili, HUANG Minxiang, ZHANG Hong, et al. An optimization strategy for limiting short circuit current[J]. Automation of Electric Power Systems, 2009, 33(11): 38-42.
[11] 陈丽莉, 黄民翔, 许诺, 等. 考虑潮流约束的限流措施优化配置[J]. 高电压技术, 2010, 36(6): 1572-1576. CHEN Lili, HUANG Minxiang, XU Nuo, et al. Optimal strategy for short-circuit limiters deployment considering power flower[J]. High Voltage Engineering, 2010, 36(6): 1572-1576.
[12] 刘树勇, 孔昭兴, 张来. 天津电网 220 kV 短路电流限制措施研究[J]. 电力系统保护与控制, 2009, 37(21): 103-107. LIU Shuyong, KONG Zhaoxing, ZHANG Lai. Application of measures of limiting 220 kV short circuit currents in Tianjin power grid[J]. Power System Protection and Control, 2009, 37(21): 103-107.
[13] 陆国庆, 姜新宇, 江健武, 等. 110 kV 及 220 kV 系统变压器中性点经小电抗接地方式的研究及其应用[J]. 电网技术, 2006, 30(1): 70-74. LU Guoqing, JIANG Xinyu, JIANG Jianwu, et al. Research on neutral grounding via small reactor for 110 kV and 220 kV power transformers and its application[J]. Power System Technology, 2006, 30(1): 70-74.
[14] 梁纪峰, 刘文颖, 梁才, 等. 500 kV 自耦变中性点串接小电抗对接地短路电流限制效果分析[J]. 电力系统保护与控制, 2011, 39(13): 96-99. LIANG Jifeng, LIU Wenying, LIANG Cai, et al. Analysis of limiting effect of 500 kV autotransformer neutral grounding by small reactance on ground short-circuit current[J]. Power System Protection and Control, 2011, 39(13): 96-99.
[15] 朱天游. 三峡电站 500 kV 主变压器中性点接地方式优化选择[J]. 电网技术, 1997, 21(5): 48-51. ZHU Tianyou. Optimal selection of 500 kV main transformer neutral grounding in Three Gorges hydroelectric power station[J]. Power System Technology, 1997, 21(5): 48-51.
[16] 朱天游. 500 kV 自耦变压器中性点经小电抗接地方式在电力系统中的应用[J]. 电网技术, 1999, 23(4): 15-18. ZHU Tianyou. Application of autotransformer neutral grounding by small reactance in 500 kV power system[J]. Power System Technology, 1999, 23(4): 15-18.
[17] YANG D, ZHAO K, ZHAO Y, et al. Optimization and decision for limiting short circuit current considering sensitivity ranking[C] //2014 International Conference on Power System Technology(POWERCON). Chengdu: IEEE, 2014: 864-870.
[18] HUANG H, XU Z, LIN X. Improving performance of multi-infeed HVDC systems using grid dynamic segmentation technique based on fault current limiters[J]. IEEE Transactions on Power Systems, 2012, 27(3): 1664-1672.
[19] CHEN L, HUANG M, WU J, et al. An optimal strategy for short circuit current limiter deployment[C] //2010 Asia-Pacific Power and Energy Engineering Conference. Chengdu: IEEE, 2010: 1-4.
[20] TANAKA K, TAKAHASHI K. An efficient method of modifying Z-matrix elements in short-circuit capacity calculations[J]. Electrical Engineering in Japan, 1994, 114(2): 48-56.
[21] 代飞, 崔挺, 徐箭, 等. 基于综合灵敏度分析的电压校正控制[J]. 电力自动化设备, 2011, 31(12): 15-20. DAI Fei, CUI Ting, XU Jian, et al. Voltage correction control based on comprehensive sensitivity analysis[J]. Electric Power Automation Equipment, 2011, 31(12): 15-20.
[22] ZHANG W, LIU Y. Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm[J]. International Journal of Electrical Power & Energy Systems, 2008, 30(9): 525-532.
[23] YANG D, ZHAO K, LIU Y. Coordinated optimization for controlling short circuit current and multi-infeed DC interaction[J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(4): 374-384.
[24] 于松青, 侯承昊, 孙英涛. 基于系统动力学的山东省电力需求预测[J]. 山东大学学报(工学版), 2015, 45(6): 91-98. YU Songqing, HOU Chenghao, SUN Yingtao. Power demand forecasting in Shandong province with system dynamics[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 91-98.
[25] 杨冬, 周勤勇, 刘玉田. 基于灵敏度分析的限流方案优化决策方法[J]. 电力自动化设备, 2015, 35(5): 111-118. YANG Dong, ZHOU Qinyong, LIU Yutian. Short circuit current limiting strategy optimization based on sensitivity analysis[J]. Electric Power Automation Equipment, 2015, 35(5): 111-118.
[1] WANG Xiu-hong,GUO Qing-qiang,LI Qi-qiang . Highorder cumulant adaptive filter based on particle swarm optimization [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(6): 15-19 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHENG Daizhan, LI Zhiqiang. A survey on linearization of nonlinear systems[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 26 -36 .
[2] WANG Yong, XIE Yudong. Gas control technology of largeflow pipe[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 70 -74 .
[3] LIU Xin 1, SONG Sili 1, WANG Xinhong 2. [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 98 -100 .
[4] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 104 -107 .
[5] CHEN Huaxin, CHEN Shuanfa, WANG Binggang. The aging behavior and mechanism of base asphalts[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 125 -130 .
[6] . [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(2): 131 -136 .
[7] LI Shijin, WANG Shengte, HUANG Leping. Change detection with remote sensing images based on forward-backward heterogenicity[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 1 -9 .
[8] ZHAO Ke-Jun, WANG Xin-Jun, LIU Xiang, CHOU Yi-Hong. Algorithms of continuous top-k join query over structured overlay networks[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 32 -37 .
[9] ZHAO Zhi-guang,WANG Deng-jie,TIAN Yun-fei . Roadbed settlement based on the gray theory[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2007, 37(3): 86 -88 .
[10] DIAO Yong, TIAN Si-Meng, CAO Zhe-Meng. Geological work method for the construction of the Yichang Wanzhou Railway tunnel in high risk karst areas[J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(5): 91 -95 .