JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2014, Vol. 44 ›› Issue (6): 19-25.doi: 10.6040/j.issn.1672-3961.1.2014.180
Previous Articles Next Articles
ZHENG Yi, ZHU Chengzhang
CLC Number:
[1] 郭晓泽,单思行.针对PM2.5的综述[J].能源与节能,2012(11):58-59. GUO Xiaoze, SHAN Sixing. Overview of PM2.5[J]. Energyand Energy Conservation, 2012(11):58-59. [2] 周蕊,邵帅,王彦清.PM2.5的毒性及机制的进展[J].科技传播,2012(6):100. ZHOU Xin, SHAO Shuai, WANG Yanqing. Progress of PM2.5 toxicity and mechanisms[J]. Science & Technology Information, 2012(6):100. [3] 李恩敬,艾春艳,赵飞.基于文献计量的PM2.5国内外研究情况分析[J].环境与可持续发展,2013,38(4):34-37. LI Enjing, AI Chunyan, ZHAO Fei. Study on PM2.5 baseon papers[J]. Environment and Sustainable Development, 2013, 38(4):34-37. [4] WANG W, GUO Y. Air pollution PM2.5 data analysis in Los Angeles long beach with seasonal ARIMA model[C]//Proceedings of International Conference on Energy and Environment Technology. Guiling: IEEE, 2009, 3:7-10. [5] MCKENDRY I G. Evaluation of artificial neural networks for fine particulate pollution (PM10 and PM2.5) forecasting[J]. Journal of the Air & Waste Management Association, 2002, 52(9):1096-1101. [6] ABRAHAM A. Artificial neural networks[J].Handbook of Measuring System Design, 2005, 129(2):901-908. [7] YAO L, LU N, JIANG S. Artificial neural network (ANN) for multi-source PM2.5 estimation using surface, MODIS, and meteorological data[C]//Proceedings of International Conference on Biomedical Engineering and Biotechnology. Macau: IEEE, 2012:1228-1231. [8] ZHU C L, JIANG Z F, WANG Q. Forecastingmodel of environment air quality based on BP neural network[J]. JisuanjiGongcheng yu Yingyong (Computer Engineering and Applications), 2007, 42(22):223-227. [9] JIANG Z, MENG X, YANG C, et al. A BP neural network prediction model of the urban air quality based on rough set[C]//Proceedings of Fourth International Conference on Natural Computation. Jinan: IEEE, 2008, 1:362-370. [10] ZHENG H M, SHANG X X. Study on prediction of atmospheric PM2.5 based on RBF neural network[C]//Proceedings of Fourth International Conference on Digital Manufacturing and Automation. Hefei: IEEE, 2013:1287-1289. [11] REHMAN M Z, NAWI N M. The effect of adaptive momentum in improving the accuracy of gradient descent back propagation algorithm on classification problems[C]//Proceedings of Software Engineering and Computer Systems. Berlin:Springer, 2011:380-390. [12] 王敏,邹滨,郭宇,等.基于BP人工神经网络的城市PM2.5浓度空间预测[J]. 环境污染与防治, 2013,35(9):63-66. WANG Min, ZHOU Bin, GUO Yu, et al. BP artificialneural network-based analysis of spatial variability of urban PM2.5 concentration[J]. Environmental Pollution & Control, 2013, 35(9):63-66. [13] 陈一萍,郑朝洪.BP和RBF网络在厦门市大气环境质量评价中的比较[J].环保科技,2008,14(4):8-11. CHEN Yiping, ZHENG Chaohong. Comparison of environmental quality evaluation based on BP and RBF network in Xiamen[J]. Environmental Protection and Technology, 2008, 14(4):8-11. [14] 刘妹琴,廖晓昕.RBF神经网络的一种鲁棒学习算法[J].华中理工大学学报,2000,28(2):8-10. LIU Meiqin, LIAO Xiaoxi. A robust RBF neural network learning algorithm[J]. Journal of Huazhong University of Science and Technology, 2000, 28(2):8-10. [15] 孙志军,薛磊,许阳明,等.深度学习研究综述[J].计算机应用研究,2012,29(8):2806-2810. SUN Zhijun, XUE Lei, XU Yangming, et al. Overview ofdeep learning[J]. Application Research of Computers, 2012, 29(8):2806-2810. [16] DJURDJEVIC P D, HUBER M. Deep belief network for modeling hierarchical reinforcement learning policies[C]//Proceedings of 2013 International Conference on Systems, Man, and Cybernetics. Manchester: IEEE, 2013:2485-2491. [17] FOUSEK P, RENNIE S, DOGNIN P, et al. Direct product based deep belief networks for automatic speech recognition[C]//Proceedings of 2013 International Conference on Acoustics, Speech and Signal Processing. Vancouver: IEEE, 2013:3148-3152. [18] ZHOU S, CHEN Q, WANG X. Discriminative deep belief networks for image classification[C]//Proceedings of 17th International Conference on Image Processing. Las Vegas: IEEE, 2010:1561-1564. [19] GHAHABI O, HERNANDO J. Deep belief networks for i-vector based speaker recognition[C]//Proceedings of 2014 International Conference on Acoustics,Speechand Signal Processing. Florence: IEEE, 2014:1700-1704. [20] RIOUX L, GIGUERE P. Sign language fingerspelling classification from depth and color images using a deep belief network[C]//Proceedings of 2014 Canadian Conference on Computer and Robot Vision. Quebec: IEEE, 2014:92-97. [21] ZHU C C, YIN J P, LI Q. A stock decision support system based on DBNs[J].Journal of Computational Information Systems, 2014, 10(2):883-893. |
[1] | ZHANG Mian, HUANG Ying, MEI Haiyi, GUO Yu. Intelligent interaction method for power distribution robot based on Kinect [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 103-108. |
[2] | XIE Zhifeng, WU Jiaping, MA Lizhuang. Chinese financial news classification method based on convolutional neural network [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 34-39. |
[3] | HE Zhengyi, ZENG Xianhua, GUO Jiang. An ensemble method with convolutional neural network and deep belief network for gait recognition and simulation [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 88-95. |
[4] | TANG Leshuang, TIAN Guohui, HUANG Bin. An object fusion recognition algorithm based on DSmT [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(1): 50-56. |
[5] | ZHOU Funa, GAO Yulin, WANG Jiayu, WEN Chenglin. Early diagnosis and life prognosis for slowlyvarying fault based on deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(5): 30-37. |
[6] | LIU Yang, LIU Bo, WANG Feng. Optimization algorithm for big data mining based on parameter server framework [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 1-6. |
[7] | WEI Bo, ZHANG Wensheng, LI Yuanxiang, XIA Xuewen, LYU Jingqin. A sparse online learning algorithm for feature selection [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(1): 22-27. |
[8] | HE Zhengyi, ZENG Xianhua, QU Shengwei, WU Zhilong. The time series prediction model based on integrated deep learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(6): 40-47. |
[9] | ZHOU Wang, ZHANG Chenlin, WU Jianxin. Qualitative balanced clustering algorithm based on Hartigan-Wong and Lloyd [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 37-44. |
[10] | MENG Lingheng, DING Shifei. Depth perceptual model based on the single image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 37-43. |
[11] | LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83. |
[12] | XIE Lin1, YIN Xi-yao2, LI Fan-zhang3, WU Jia3. A kind of inverse resolution learning expression [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 46-50. |
[13] | HE Xue-ying1, 2, QIN Wei1, YIN Yi-long1 *, ZHAO Lian-zheng1,QIAO Hao3. Video-based fingerprint verification using machine learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 29-33. |
[14] | LIANG Chun-lin1, PENG Ling-xi2*. An immune network based unsupervised classifier [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 82-86. |
[15] | GUO Mao-Zu, ZOU Quan, LI Wen-Bin, HAN Ying-Peng. Learning in bioinformatics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 1-6. |
|