JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE) ›› 2017, Vol. 47 ›› Issue (1): 22-27.doi: 10.6040/j.issn.1672-3961.1.2016.060

Previous Articles     Next Articles

A sparse online learning algorithm for feature selection

WEI Bo1,2, ZHANG Wensheng1, LI Yuanxiang3, XIA Xuewen2, LYU Jingqin2   

  1. 1. Institute of Automation, Chinese Academy of Science, Beijing 100190, China;
    2. School of Software, East China Jiaotong University, Nanchang 330013, Jiangxi, China;
    3. State Key Laboratory of Software Engineering, Wuhan University, Wuhan 430072, Hubei, China
  • Received:2016-03-01 Online:2017-02-20 Published:2016-03-01

Abstract: In order to effectively deal with mass, high dimensional and sparse big data and improve the efficiency of data classification, an online learning algorithm based on the sparsity principle of L1 norm was proposed. The feature of high dimensional streaming data were novel “Integer” processed by using the online machine learning algorithm framework increased the sparsity of data feature, meanwhile enhanced the partial feature value within the scope of the threshold value and greatly improved the effect of sparse data classification. The performance of SFSOL algorithm was analyzed by using public data sets. The algorithm and the performance of the other three sparse online learning algorithms were compared. The experimental results showed that SFSOL algorithm was more suitable to accurately classify for high-dimensional sparse data.

Key words: L1 norm, big data, machine learning, online learning, sparsity

CLC Number: 

  • TP391
[1] GUYON I, ELISSCCFF A. An introduction to variable and feature selection[J]. Journal of Machine Learning Research, 2003, 3(6):1157-1182.
[2] SAEYS Y, INZA I, LARRANAGA P. A review of feature selection techniques in bioinformatics[J]. Bioinformatics, 2007, 23(19):2507-2517.
[3] 李霞,王连喜,蒋盛益.面向不平衡问题的集成特征选择[J].山东大学学报(工学版),2011,41(3):7-11. LI Xia, WANG Lianxi, JIANG Shengyi. Ensemble learning based feature selection for imbalanced problems[J]. Journal of Shandong University(Engineering Science), 2011, 41(3):7-11.
[4] 万中英,王明文,左家莉,等. 结合全局和局部信息的特征选择算法[J]. 山东大学学报(理学版),2016,51(5):87-93. WAN Zhongying, WANG Mingwen, ZUO Jiali, et al. Feature selection combined with the global and local information[J]. Journal of Shandong University(Natural Science), 2016, 51(5):87-93.
[5] 孙大为,张广艳,郑纬民.大数据流式计算:关键技术及系统实例[J].软件学报,2014,25(4):839-862. SUN Dawei, ZHANG Guangyan, ZHENG Weimin. Big data stream computing: technologies and instances[J]. Journal of Software, 2014, 25(4):839-862.
[6] LANGFORD J, LI Lihong, ZHANG Tong. Sparse online learning via truncated gradient[J]. Journal of Machine Learning Research, 2009, 10(1):777-801.
[7] 李志杰,李元香,王峰,等. 面向大数据分析的在线学习算法综述[J].计算机研究与发展,2015,52(8):1707-1721. LI Zhijie, LI Yuanxiang, WANG Feng, et al. Online learning algorithms for big data analytics: a survey[J]. Journal of Computer Research and Development, 2015, 52(8):1707-1721.
[8] ROSENBLATT F. A probabilistic model for information storage and organization in the brain1[J]. Artificial Intelligence: Critical Concepts, 2000, 2(6):386-408.
[9] LI Yi, LONG P M. The relaxed online maximum margin algorithm[J]. Machine Learning, 2002, 46(1-3):361-387.
[10] GENTILE Claudio. A new approximate maximal margin classification algorithm[J]. Journal of Machine Learning Research, 2001, 2(2):213-242.
[11] CRAMMER Koby, DEKEL Ofer, KESHET Joseph, et al. Online passive-aggressive algorithms[J]. Journal of Machine Learning Research, 2006, 7(3):551-585.
[12] DREDZE Mark, CRAMMER Koby, PEREIRA Fernando. Confidence-weighted linear classification[J]. Journal of Machine Learning Research, 2012, 13(9):1891-1926.
[13] WANG Jialei, ZHAO Peilin, HOI S C H. Exact soft confidence-weighted learning[C] // Proceedings of the 29th International Conference on Machine Learning. Scotland, Braitain: Edinburgh, 2012: 1-8.
[14] KIVINEN J, SMOLA A J, WILLIAMSON R C. Online learning with kernels[J]. IEEE Transactions on Signal Processing, 2004, 52(8):2165-2176.
[15] DASH M, GOPALKRISHNAN V. Distance based feature selection for clustering microarray data[C] // International Conference on Database Systems for Advanced Applications. New Delhi, India: Springer Berlin Heidelberg, 2008, 49(47):512-519.
[16] KOHAVI R,JOHN G H. Wrappers for feature subset selection[J]. Artificial Intelligence, 1997, 97(1): 273-324.
[17] ZHAO Z, LIU H. Spectral feature selection for supervised and unsupervised learning[C] // Proceedings of the 24th International Conference on Machine Learning. New York, USA: ACM, 2007: 1151-1157.
[18] XU Z, JIN R, YE J, et al. Non-monotonic feature selection[C] // International Conference on Machine Learning. Montreal, USA: ACM, 2009: 45-51.
[19] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[20] DUCHI J, SINGER Y. Efficient online and batch learning using forward backward splitting[J].The Journal of Machine Learning Research, 2009, 10(8):2899-2934.
[1] ZHANG Mian, HUANG Ying, MEI Haiyi, GUO Yu. Intelligent interaction method for power distribution robot based on Kinect [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(5): 103-108.
[2] WANG Tingting, ZHAI Junhai, ZHANG Mingyang, HAO Pu. K-NN algorithm for big data based on HBase and SimHash [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2018, 48(3): 54-59.
[3] LIU Yang, LIU Bo, WANG Feng. Optimization algorithm for big data mining based on parameter server framework [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2017, 47(4): 1-6.
[4] ZHOU Wang, ZHANG Chenlin, WU Jianxin. Qualitative balanced clustering algorithm based on Hartigan-Wong and Lloyd [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 37-44.
[5] LIN Yaojin, ZHANG Jia, LIN Menglei, WANG Juan. A method of collaborative filtering recommendation based on fuzzy information entropy [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(5): 13-20.
[6] MENG Lingheng, DING Shifei. Depth perceptual model based on the single image [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(3): 37-43.
[7] ZHANG Jia, LIN Yaojin, LIN Menglei, LIU Jinghua, LI Huizong. Entropy-based collaborative filtering algorithm [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2016, 46(2): 43-50.
[8] LIU Jie, YANG Peng, LYU Wensheng, LIU Agudamu, LIU Junxiu. Prediction models of PM2.5 mass concentration based on meteorological factors [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2015, 45(6): 76-83.
[9] ZHENG Yi, ZHU Chengzhang. A prediction method of atmospheric PM2.5 based on DBNs [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2014, 44(6): 19-25.
[10] XIE Lin1, YIN Xi-yao2, LI Fan-zhang3, WU Jia3. A kind of inverse resolution learning expression [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2013, 43(4): 46-50.
[11] HE Xue-ying1, 2, QIN Wei1, YIN Yi-long1 *, ZHAO Lian-zheng1,QIAO Hao3. Video-based fingerprint verification using machine learning [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2011, 41(4): 29-33.
[12] LIANG Chun-lin1, PENG Ling-xi2*. An immune network based unsupervised classifier [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2010, 40(5): 82-86.
[13] GUO Mao-Zu, ZOU Quan, LI Wen-Bin, HAN Ying-Peng. Learning in bioinformatics [J]. JOURNAL OF SHANDONG UNIVERSITY (ENGINEERING SCIENCE), 2009, 39(3): 1-6.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!