您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 15-22.doi: 10.6040/j.issn.1672-3961.1.2016.019

• • 上一篇    下一篇

基于混合Hausdorff距离的多示例学习近邻分类器

陈泽华,尚晓慧,柴晶   

  1. 太原理工大学信息工程学院, 山西 太原 030024
  • 收稿日期:2016-07-12 出版日期:2016-12-20 发布日期:2016-07-12
  • 通讯作者: 柴晶(1983— ),男,山东聊城人,讲师,博士,主要研究方向为数据挖掘和机器学习.E-mail:jingchai@aliyun.com E-mail:zehuachen@163.com
  • 作者简介:陈泽华(1974— ),女,山西太原人,副教授,博士,主要研究方向为智能信息处理.E-mail:zehuachen@163.com
  • 基金资助:
    国家自然科学基金资助项目(61403273,61402319);山西省自然科学基金资助项目(2014021022-4,2014021022-3)

Neighborhood related multiple-instance classifiers based on integrated Hausdorff distance

CHEN Zehua, SHANG Xiaohui, CHAI Jing   

  1. College of Information Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
  • Received:2016-07-12 Online:2016-12-20 Published:2016-07-12

摘要: 通过对最小和最大Hausdorff距离的分析,提出混合Hausdorff距离将它们融合在一起以弥补任意单一Hausdorff距离的缺陷,并基于混合Hausdorff距离设计多示例学习近邻分类器。采用近邻分量分析模型能够优化混合Hausdorff距离中的权系数,从而得到在近邻分类准则下最优的混合Hausdorff距离。结果表明:相对于任意单一Hausdorff距离,基于混合Hausdorff距离的多示例学习近邻分类器通常能够获得更高的识别精度。

关键词: Hausdorff距离, 多示例学习, 近邻分量分析, 分类器, 权系数

Abstract: Based on the analysis of minimal Hausdorff(minH)and maximal Hausdorff(maxH)distances, integrated Hausdorff(intH)distance was proposed to combine minH and maxH, and used to design neighborhood related multiple-instance classifiers. The Neighborhood Component Analysis(NCA)model was used to learn the weighting coefficients in intH automatically and obtain the optimal intH according to the neighborhood related classification criterion. The experimental results showed that in most cases, compared with minH and maxH, intH could improve the classification accuracies of neighborhood related multiple-instance classifiers.

Key words: multiple-instance learning, weighting coefficients, Hausdorff distance, classifier, neighborhood component analysis

中图分类号: 

  • TP181
[1] 周志华. 多示例学习[M]. 知识科学中的基本问题研究. 北京:清华大学出版社, 2006:322-336.
[2] DIETTERICH T G, LATHROP R H, LOZANO-PEREZ T. Solving the multiple-instance problem with axis-parallel rectangles[J]. Artificial Intelligence, 1997, 89(1-2): 31-71.
[3] MARON O. Learning from ambiguity[D]. Boston: Massachusetts Institute of Technology, 1998.
[4] MARON O, LOZANO-PEREZ T. A framework for multiple-instance learning[C] //Advances in Neural Information Processing Systems 10. Denver, USA: MIT Press, 1998:570-576.
[5] ZHANG Q, GOLDMAN S A. EM-DD: an improved multiple-instance learning technique[C] //Advances in Neural Information Processing Systems 14. Vancouver, Canada: MIT Press, 2002:1073-1080.
[6] WANG J, ZUCKER J D. Solving the multiple-instance problem: a lazy learning approach[C] //Proceedings of the 17th International Conference on Machine Learning. Stanford, USA: Morgan Kaufmann Press, 2000:1119-1125.
[7] ANDREWS S, TSOCHANTARIDIS I, HOFMANN T. Support vector machines for multiple-instance learning[C] //Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2003:561-568.
[8] GARTER T, FLACH P A, KOWALCZYK A, et al. Multi-instance kernels[C] //Proceedings of the 19th International Conference on Machine Learning. Sydney, Australia: Morgan Kaufmann Press, 2002:179-186.
[9] ZHOU Zhihua, SUN Yuyin, LI Yufeng. Multi-instance learning by treating instances as non-I.I.D. samples[C] //Proceedings of the 26th International Conference on Machine Learning. Montreal, Canada: ACM Press, 2009:1249-1256.
[10] LI W J, YEUNG D T. MILD: multiple-instance learning via disambiguation[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(1):76-89.
[11] SUN Y Y, NG M K, ZHOU Z H. Multi-instance dimensionality reduction[C] //Proceedings of the 24th AAAI Conference on Artificial Intelligence. Atlanta, USA: AAAI Press, 2010: 587-592.
[12] PING Wei, XU Ye, REN Kexin, et al. Non-i.i.d. multi-instance dimensionality reduction by learning a maximum bag margin subspace[C] //Proceedings of the 24th AAAI Conference on Artificial Intelligence Atlanta. USA: AAAI Press, 2010: 551-556.
[13] AMAR R A, DOOLY D R, GOLDMAN S A, et al. Multiple-instance learning of real-valued data[C] //Proceedings of the 18th International Conference on Machine Learning. Williamstown, USA: Morgan Kaufmann Press, 2001: 3-10.
[14] 薛晓冰,韩洁凌,姜远,等. 基于多示例学习技术的 Web 目录页面链接推荐[J].计算机研究与发展, 2007,44(3):406-411. XUE Xiaobing, HAN Jieling, JIANG Yuan, et al. Link recommendation in web index page based on multi-instance learning techniques[J]. Journal of Computer Research and Development, 2007, 44(3):406-411.
[15] ROWEIS S, HINTON G, SALAKHUTDINOV R. Neighbourhood component analysis[C] //Advances in Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2005:513-520.
[16] PRESS W H, TEUKOLSKY S A, VETTERLING W T, et al. Numerical recipes: the art of scientific computing[M]. New York: Cambridge University Press, 2007.
[17] ZHANG Minling, ZHOU Zhihua. Multi-instance clustering with applications to multi-instance prediction[J]. Applied Intelligence, 2009, 31(1):47-68.
[18] ZAFRA A, PECHENIZKIY M, VENTURA S. ReliefF-MI: an extension of ReliefF to multiple instance learning[J]. Neurocomputing, 2012, 75(1):210-218.
[1] 于曰伟,周长城,赵雷雷,邢玉清,石沛林. 基于交替迭代的车辆主动悬架LQG控制器设计[J]. 山东大学学报(工学版), 2017, 47(4): 50-58.
[2] 曾碧, 毛勤. 改进的室内三维模糊位置指纹定位算法[J]. 山东大学学报(工学版), 2015, 45(3): 22-27.
[3] 江伟坚1,2,郭躬德1,2*,赖智铭1,2. 基于新Haar-like特征的Adaboost人脸检测算法[J]. 山东大学学报(工学版), 2014, 44(2): 43-48.
[4] 赵加敏,冯爱民*,刘学军. 局部密度嵌入的结构单类支持向量机[J]. 山东大学学报(工学版), 2012, 42(4): 13-18.
[5] 李玉鑑,孟东霞*,桂智明. 几何集成的改进——特征边界点快速计算[J]. 山东大学学报(工学版), 2011, 41(4): 56-60.
[6] 郭剑毅1,2,雷春雅1,余正涛1,2,苏磊1,2,赵君1,田维1. 基于信息熵的半监督领域实体关系抽取研究[J]. 山东大学学报(工学版), 2011, 41(4): 7-12.
[7] 冯爱民1,刘学军1,陈斌2. 结构大间隔单类分类器[J]. 山东大学学报(工学版), 2010, 40(3): 6-12.
[8] 张丽梅1,2 ,乔立山1,2 ,陈松灿1 . 基于张量模式的特征提取及分类器设计综述[J]. 山东大学学报(工学版), 2009, 39(1): 6-14.
[9] 陈涛,方志刚,徐洁 . 基于人脸和语音的混合型身份认证系统[J]. 山东大学学报(工学版), 2008, 38(2): 56-60 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[2] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[3] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[4] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[5] 李辉平, 赵国群, 张雷, 贺连芳. 超高强度钢板热冲压及模内淬火工艺的发展现状[J]. 山东大学学报(工学版), 2010, 40(3): 69 -74 .
[6] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 庞志俭 张长桥. 甲基丙烯酸十二酯基二元共聚制备缔合减阻剂的合成与性能研究[J]. 山东大学学报(工学版), 2009, 39(5): 128 -132 .
[9] 王学平,王登杰,孙英明,董磊 . 免棱镜全站仪在桥梁检测中的应用[J]. 山东大学学报(工学版), 2007, 37(3): 105 -108 .
[10] 陈朋 胡文容 裴海燕. 一株反硝化细菌LZ-14的筛选及其脱氮特性[J]. 山东大学学报(工学版), 2009, 39(5): 133 -138 .