山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (6): 8-14.doi: 10.6040/j.issn.1672-3961.1.2016.294
王梅1,2,曾昭虎3,孙莺萁1,杨二龙4*,宋考平2,4
WANG Mei1,2, ZENG Zhaohu3, SUN Yingqi1, YANG Erlong4*, SONG Kaoping2,4
摘要: 在ε-不敏感支持向量回归(ε-insensitive support vector regression, ε-SVR)正则化路径的基础上,提出基于输入K-近邻的三步式SVR模型组合方法。在整个样本集上进行训练,求得ε-SVR的正则化路径。由SVR正则化路径的分段线性性质确定初始模型集合,并应用平均贝叶斯信息准则(Bayesian Information Criterion, BIC)策略对初始模型集合进行修剪以获得候选模型集合。该修剪策略可减小候选模型集合的规模,提高模型组合的计算效率和预测性能。在预测或测试阶段,根据样本输入向量采用K-近邻法确定最终组合模型集合,并实现贝叶斯组合预测。证明了ε-SVR模型组合的Lε-风险一致性,给出了SVR模型组合基于样本的合理性解释。试验结果验证了正则化路径上基于输入K-近邻的ε-SVR模型组合的有效性。
中图分类号:
[1] BURGES C J. A tutorial on support vector machines for pattern recognition[J]. Data mining and knowledge discovery, 1998, 2(2):121-167. [2] 邓乃扬, 田英杰. 数据挖掘中的新方法: 支持向量机[M]. 北京: 科学出版社, 2004. [3] ANTHONY M, HOLDEN S B. Cross-validation for binary classification by real-valued functions: theoretical analysis[C] //Proceedings of the 11th Annual Conference on Computational Learning Theory. Berlin, Germany: Springer, 1998: 218-229. [4] CHAPELLE O, VAPNIK V. Model selection for support vector machines[C] //Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 1999. [5] VAPNIK V, CHAPELLE O. Bounds on error expectation for support vector machines[J]. Neural Computation, 2000, 12(9):2013-2036. [6] GOLD C, SOLLICH P. Model selection for support vector machine classification [J]. Neurocomputing, 2003, 55(1):221-249. [7] KEERTHI S S. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algorithms[J]. IEEE Transactions on Neural Networks, 2002, 13(5):1225-1229. [8] 刘向东, 骆斌, 陈兆乾. 支持向量机最优模型选择的研究[J]. 计算机研究与发展, 2005, 42(4):576-581. LIU Xiangdong, LUO Bin, CHEN Zhaoqian. Optimal model selection for support vector machine[J]. Journal of Computer Research and Development, 2005, 42(4):576-581. [9] 汪廷华. 支持向量机模型选择研究 [D]. 北京:北京交通大学, 2010. WANG Tinghua. Reseach on model selection for support vector machine[D].Beijing: Beijing Jiaotong University, 2010. [10] 丁立中, 廖士中. 基于正则化路径的支持向量机近似模型选择[J]. 计算机研究与发展, 2012, 49(6):1248-1255. DING Lizhong, LIAO Shizhong. Approximate model selection on regularization path for support vector machines[J]. Journal of Computer Research and Development, 2012, 49(6):1248-1255. [11] BREIMAN L. Bagging predictors[J]. Machine Learning, 1996, 24(2):123-140. [12] VALENTINI G, MUSELLI M, RUFFINO F. Bagged ensembles of support vector machines for gene expression data analysis[C] //Proceedings of the Int Joint Conference on Neural Networks. Piscataway, USA: IEEE Computer Society, 2003: 1844-1849. [13] SUN B Y, HUANG D S. Least squares support vector machine ensemble [C] //Proceedings of the Int Joint Confence on Neural Networks. Piscataway, USA: IEEE Computer Society, 2004:2013-2016. [14] KIM H C, PANG S, JE H M. Constructing support vector machine ensemble[J]. Pattern Recognition, 2003, 36(12):2757-2767. [15] KIM H C, PANG S, JE H M. Pattern classification using support vector machine ensemble[C] //Proceedings of the 16th Int Confence on Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2002:160-163. [16] LI X, WANG L, SUNG E. AdaBoost with SVM-based component classifiers[J]. Engineering Applications of Artificial Intelligence, 2008, 21(5):785-795. [17] 王梅,廖士中. 正则化路径上三步式SVM贝叶斯组合[J]. 计算机研究与发展, 2013, 50(9):1855-1864. WANG Mei, LIAO Shizhong. Three-step Bayesian combination of SVM on regularization path[J]. Journal of Computer Research and Development, 2013, 50(9): 1855-1864. [18] GUNTER Lacey, ZHU Ji. Efficient computation and model selection for the support vector regression[J]. Neural Computation, 2007, 19(6):1633-1655. [19] 廖士中,王梅,赵志辉. 正定矩阵支持向量机正则化路径算法[J]. 计算机研究与发展, 2013, 50(11): 2253-2261. LIAO Shizhong, WANG Mei, ZHAO Zhihui. Regularization path algorithm of SVM via positive definite matrix[J]. Journal of Computer Research and Development, 2013, 50(11): 2253-2261. [20] WANG Mei, LIAO Shizhong. Model combination for support vector regression via regularization path[C] //Proceedings of 12th Pacific Rim International Conference on Artificial Intelligence(PRICAI 2012). Beijing, China:Science Press, 2012:649-660. [21] STEINWART I. On the influence of the kernel on the consistency of support vector machines[J]. The Journal of Machine Learning Research, 2002(2):67-93. [22] CHRISTMANN Andreas, STEINWART Ingo. Consistency and robustness of kernel-based regression in convex risk minimization[J]. Bernoulli, 2007, 13(3):799-819. |
[1] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[2] | 李笋,王超,张桂林,徐志根,程涛,王义元,王瑞琪. 基于支持向量回归的短期负荷预测[J]. 山东大学学报(工学版), 2017, 47(6): 52-56. |
[3] | 李富贵1,2,黄添强1,2*,苏立超1,2,苏伟峰3. 融合多特征的异源视频复制-粘贴篡改检测[J]. 山东大学学报(工学版), 2013, 43(4): 32-38. |
[4] | 于立萍1,2,唐焕玲1,2. 基于分类一致性的迁移学习及其在行人检测中的应用[J]. 山东大学学报(工学版), 2013, 43(4): 26-31. |
[5] | 徐龙琴1,刘双印1,2,3,4*. 基于APSO-WLSSVR的水质预测模型[J]. 山东大学学报(工学版), 2012, 42(5): 80-86. |
[6] | 赵燕燕, 范丽亚. 多输出支持向量回归机在依赖时间的变分不等式中的应用[J]. 山东大学学报(工学版), 2011, 41(3): 23-30. |
|