山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 13-18.doi: 10.6040/j.issn.1672-3961.1.2014.072
浩庆波1, 牟少敏1,2, 尹传环3, 昌腾腾1, 崔文斌1
HAO Qingbo1, MU Shaomin1,2, YIN Chuanhuan3, CHANG Tengteng1, CUI Wenbin1
摘要: 为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树皮图像数据集上对本研究算法的有效性进行测试。实验结果表明,本研究提出的算法在分类精度和效率上具有一定的优势。
中图分类号:
[1] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 2000:267-287. [2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297. [3] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167. [4] SMOLA A J, SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222. [5] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京: 科学出版社, 2004:164-185. [6] 牟少敏. 核方法的研究及其应用[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:17-21. MU Shaomin. Research on kernels method and application[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:17-21. [7] 饶鲜, 董春曦, 杨绍全. 基于支持向量机的入侵检测系统[J]. 软件学报, 2003, 14(4):798-803. RAO Xian, DONG Chunxi, YANG Shaoquan. An intrusion detection system based on support vector machine[J]. Journal of Software, 2003, 14(4):798-803. [8] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1804-1811. [9] 尹传环. 结构化数据核函数的研究[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:3-9. YIN Chuanhuan. Research on kernels for structured data[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:3-9. [10] LIU Q, TANG X, LU H, et al. Face recognition using kernel scatter-difference-based discriminant analysis[J]. IEEE Transactions on Neural Networks, 2006, 17(4):1081-1085. [11] WANG X, CHUNG F, WANG S. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(8):2753-2762. [12] WANG H, CHEN S, HU Z, et al. Locality-preserved maximum information projection[J]. IEEE Transactions on Neural Networks, 2008, 19(4):571-585. [13] ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization[J]. Annals of Statistics, 2004, 32(1):56-85. [14] STEINWART I. Support vector machines are universally consistent[J]. Journal of Complexity, 2002, 18(3):768-791. [15] 顾彬, 郑关胜, 王建东. 增量和减量式标准支持向量机的分析[J]. 软件学报, 2013, 24(7):1601-1613. GU Bin, ZHENG Guansheng, WANG Jiandong. Analysis for incremental and decremental standard support vector machine[J]. Journal of Software, 2013, 24(7):1601-1613. [16] BRAILOVSKY V L, BARZILAY O, SHAHAVE R. On global, local, mixed and neighborhood kernels for support vector machines[J]. Pattern Recognition Letters, 1999, 20(11):1183-1190. [17] ZAKAI A, RITOV Y. Consistency and localizability[J]. The Journal of Machine Learning Research, 2009, 10(4):827-856. [18] 尹传环, 牟少敏, 田盛丰, 等. 局部支持向量机的研究进展[J]. 计算机科学, 2012, 39(1):170-174. YIN Chuanhuan, MU Shaomin, TIAN Shengfeng, et al. Survey of recent trends in local support vector machine[J]. Computer Science, 2012, 39(1):170-174. [19] SEGATA N, BLANZIERI E. Fast and scalable local kernel machines[J]. The Journal of Machine Learning Research, 2010, 11(6):1883-1926. [20] SHEN M, CHEN J, LIN C. Modeling of nonlinear medical signal based on local support vector machine[C]//Instrumentation and Measurement Technology Conference. Singapore: IEEE, 2009:675-679. [21] YANG X, CHEN S, CHEN B, et al. Proximal support vector machine using local information[J]. Neurocomputing, 2009, 73(1):357-365. [22] CHENG H, TAN P, JIN R. Efficient algorithm for localized support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(4): 537-549. [23] KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910. [24] ALIFERIS C F, TSAMARDINOS I, STATNIKOV A R, et al. Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery[C]//Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. Las Vegas, USA: METMBS, 2003:371-376. [25] ZHANG H, BERG A C, MAIRE M, et al. SVM-kNN:discriminative nearest neighbor classification for visual category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2126-2136. |
[1] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54. |
[2] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[3] | 龙柏,曾宪宇,李徵,刘淇. 电商商品嵌入表示分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 17-24. |
[4] | 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39. |
[5] | 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53. |
[6] | 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59. |
[7] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
[8] | 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139. |
[9] | 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16. |
[10] | 王磊,邓晓刚,曹玉苹,田学民. 基于MLFDA的化工过程故障模式分类方法[J]. 山东大学学报(工学版), 2017, 47(5): 179-186. |
[11] | 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42. |
[12] | 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93. |
[13] | 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14. |
[14] | 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22. |
[15] | 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40. |
|