您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2015, Vol. 45 ›› Issue (1): 13-18.doi: 10.6040/j.issn.1672-3961.1.2014.072

• 机器学习与数据挖掘 • 上一篇    下一篇

一种基于聚类的快速局部支持向量机算法

浩庆波1, 牟少敏1,2, 尹传环3, 昌腾腾1, 崔文斌1   

  1. 1. 山东农业大学信息科学与工程学院, 山东 泰安 271018;
    2. 山东农业大学农业大数据研究中心, 山东 泰安 271018;
    3. 北京交通大学计算机与信息技术学院, 北京 100044
  • 收稿日期:2014-03-26 修回日期:2015-01-08 出版日期:2015-02-20 发布日期:2014-03-26
  • 通讯作者: 牟少敏(1964-),男,山东泰安人,副教授,博士,主要研究方向为机器学习,模式识别,数字图像处理和信息安全.E-mail:msm@sdau.edu.cn E-mail:msm@sdau.edu.cn
  • 作者简介:浩庆波(1988-),男,山东泰安人,硕士研究生,主要研究方向为机器学习与数字图像处理.E-mail:haoqingbo4546@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2012FM024);国家自然科学青年基金资助项目(61105056);山东省农业重大应用技术创新课题资助项目

An algorithm of fast local support vector machine based on clustering

HAO Qingbo1, MU Shaomin1,2, YIN Chuanhuan3, CHANG Tengteng1, CUI Wenbin1   

  1. 1. School of Information Science and Engineering, Shandong Agricultural University, Taian 271018, Shandong, China;
    2. Agricultural Big-Data Research Center, Shandong Agricultural University, Taian 271018, Shandong, China;
    3. School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
  • Received:2014-03-26 Revised:2015-01-08 Online:2015-02-20 Published:2014-03-26

摘要: 为进一步改善局部支持向量机的分类效率和分类精度,提出一种改进的局部支持向量机算法。该算法对每类训练样本分别进行聚类,使用聚类生成的样本中心点集代替样本,使用改进的k最近邻算法选取测试样本的k个近邻。分别在UCI数据集和自建树皮图像数据集上对本研究算法的有效性进行测试。实验结果表明,本研究提出的算法在分类精度和效率上具有一定的优势。

关键词: k均值聚类, 分类, 局部支持向量机, 纹理特征, k最近邻, 核函数

Abstract: In order to further improve the classification efficiency and precision of local support vector machine, a new algorithm was proposed.The two major improvements were as follows. First, every type of training samples was clustered seperately, and the training samples were substituted for sample centers generated by clustering. Second, the k nearest neighbors of test samples were selected by using the improved k-nearest neighbor algorithm. Tests were done on UCI data sets and bark image data sets made by the proposed algorithm to verify its effectiveness. Experimental results demonstrated that this algorithm had certain superiority of classification accuracy and efficiency.

Key words: kernel function, local support vector machine, texture features, k-nearest neighbor, k-means clustering, classification

中图分类号: 

  • TP391
[1] VAPNIK V. The nature of statistical learning theory[M]. Berlin, Heidelberg: Springer, 2000:267-287.
[2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3):273-297.
[3] BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2):121-167.
[4] SMOLA A J, SCHLKOPF B. A tutorial on support vector regression[J]. Statistics and Computing, 2004, 14(3):199-222.
[5] 邓乃扬, 田英杰. 数据挖掘中的新方法:支持向量机[M]. 北京: 科学出版社, 2004:164-185.
[6] 牟少敏. 核方法的研究及其应用[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:17-21. MU Shaomin. Research on kernels method and application[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:17-21.
[7] 饶鲜, 董春曦, 杨绍全. 基于支持向量机的入侵检测系统[J]. 软件学报, 2003, 14(4):798-803. RAO Xian, DONG Chunxi, YANG Shaoquan. An intrusion detection system based on support vector machine[J]. Journal of Software, 2003, 14(4):798-803.
[8] BLANZIERI E, MELGANI F. Nearest neighbor classification of remote sensing images with the maximal margin principle[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6):1804-1811.
[9] 尹传环. 结构化数据核函数的研究[D]. 北京: 北京交通大学计算机与信息技术学院, 2008:3-9. YIN Chuanhuan. Research on kernels for structured data[D]. Beijing: School of Computer and Information Technology, Beijing Jiaotong University, 2008:3-9.
[10] LIU Q, TANG X, LU H, et al. Face recognition using kernel scatter-difference-based discriminant analysis[J]. IEEE Transactions on Neural Networks, 2006, 17(4):1081-1085.
[11] WANG X, CHUNG F, WANG S. On minimum class locality preserving variance support vector machine[J]. Pattern Recognition, 2010, 43(8):2753-2762.
[12] WANG H, CHEN S, HU Z, et al. Locality-preserved maximum information projection[J]. IEEE Transactions on Neural Networks, 2008, 19(4):571-585.
[13] ZHANG T. Statistical behavior and consistency of classification methods based on convex risk minimization[J]. Annals of Statistics, 2004, 32(1):56-85.
[14] STEINWART I. Support vector machines are universally consistent[J]. Journal of Complexity, 2002, 18(3):768-791.
[15] 顾彬, 郑关胜, 王建东. 增量和减量式标准支持向量机的分析[J]. 软件学报, 2013, 24(7):1601-1613. GU Bin, ZHENG Guansheng, WANG Jiandong. Analysis for incremental and decremental standard support vector machine[J]. Journal of Software, 2013, 24(7):1601-1613.
[16] BRAILOVSKY V L, BARZILAY O, SHAHAVE R. On global, local, mixed and neighborhood kernels for support vector machines[J]. Pattern Recognition Letters, 1999, 20(11):1183-1190.
[17] ZAKAI A, RITOV Y. Consistency and localizability[J]. The Journal of Machine Learning Research, 2009, 10(4):827-856.
[18] 尹传环, 牟少敏, 田盛丰, 等. 局部支持向量机的研究进展[J]. 计算机科学, 2012, 39(1):170-174. YIN Chuanhuan, MU Shaomin, TIAN Shengfeng, et al. Survey of recent trends in local support vector machine[J]. Computer Science, 2012, 39(1):170-174.
[19] SEGATA N, BLANZIERI E. Fast and scalable local kernel machines[J]. The Journal of Machine Learning Research, 2010, 11(6):1883-1926.
[20] SHEN M, CHEN J, LIN C. Modeling of nonlinear medical signal based on local support vector machine[C]//Instrumentation and Measurement Technology Conference. Singapore: IEEE, 2009:675-679.
[21] YANG X, CHEN S, CHEN B, et al. Proximal support vector machine using local information[J]. Neurocomputing, 2009, 73(1):357-365.
[22] CHENG H, TAN P, JIN R. Efficient algorithm for localized support vector machine[J]. IEEE Transactions on Knowledge and Data Engineering, 2010, 22(4): 537-549.
[23] KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5):905-910.
[24] ALIFERIS C F, TSAMARDINOS I, STATNIKOV A R, et al. Causal explorer: a causal probabilistic network learning toolkit for biomedical discovery[C]//Proceedings of the International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences. Las Vegas, USA: METMBS, 2003:371-376.
[25] ZHANG H, BERG A C, MAIRE M, et al. SVM-kNN:discriminative nearest neighbor classification for visual category recognition[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006:2126-2136.
[1] 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报(工学版), 2018, 48(5): 47-54.
[2] 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133.
[3] 龙柏,曾宪宇,李徵,刘淇. 电商商品嵌入表示分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 17-24.
[4] 谢志峰,吴佳萍,马利庄. 基于卷积神经网络的中文财经新闻分类方法[J]. 山东大学学报(工学版), 2018, 48(3): 34-39.
[5] 张佩瑞,杨燕,邢焕来,喻琇瑛. 基于核K-means的增量多视图聚类算法[J]. 山东大学学报(工学版), 2018, 48(3): 48-53.
[6] 王婷婷,翟俊海,张明阳,郝璞. 基于HBase和SimHash的大数据K-近邻算法[J]. 山东大学学报(工学版), 2018, 48(3): 54-59.
[7] 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87.
[8] 王换,周忠眉. 一种基于聚类的过抽样算法[J]. 山东大学学报(工学版), 2018, 48(3): 134-139.
[9] 叶明全,高凌云,万春圆. 基于人工蜂群和SVM的基因表达数据分类[J]. 山东大学学报(工学版), 2018, 48(3): 10-16.
[10] 王磊,邓晓刚,曹玉苹,田学民. 基于MLFDA的化工过程故障模式分类方法[J]. 山东大学学报(工学版), 2017, 47(5): 179-186.
[11] 李素姝,王士同,李滔. 基于LS-SVM与模糊补准则的特征选择方法[J]. 山东大学学报(工学版), 2017, 47(3): 34-42.
[12] 何其佳,刘振丙,徐涛,蒋淑洁. 基于LBP和极限学习机的脑部MR图像分类[J]. 山东大学学报(工学版), 2017, 47(2): 86-93.
[13] 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14.
[14] 陈泽华,尚晓慧,柴晶. 基于混合Hausdorff距离的多示例学习近邻分类器[J]. 山东大学学报(工学版), 2016, 46(6): 15-22.
[15] 王斌,常发亮,刘春生. 基于多特征融合的交通标志分类[J]. 山东大学学报(工学版), 2016, 46(4): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!