山东大学学报(工学版) ›› 2014, Vol. 44 ›› Issue (5): 14-19.doi: 10.6040/j.issn.1672-3961.0.2014.090
葛凯蓉, 常发亮, 董文会
GE Kairong, CHANG Faliang, DONG Wenhui
摘要: 为解决目标跟踪过程中光照变化、姿态变化等问题,提出了一种基于局部敏感直方图特征的稀疏表达跟踪方法。对粒子滤波获取的多个候选目标提取局部敏感直方图特征,并根据模板字典,采用改进的L1范数模型求取每个候选目标的稀疏表示系数;然后计算每个候选目标的权重,选取权重最大的候选目标作为跟踪结果。实验结果表明,本算法能很好实现对目标的跟踪,在解决光照变化、姿态变化等问题方面有较好的效果。
中图分类号:
[1] 王相海,方玲玲,丛志环.基于MSPF的实时监控多目标跟踪算法研究[J].自动化学报,2012,38(1):139-144.WANG Xianghai, FANG Lingling, CONG Zhihuan.Research on real-time multi-target tracking algorithm based on MSPF[J].Acta Automatica Sinica, 2012, 38(1):139-144. [2] Joshi A S, James M R, Samples M E.Tracking on-road vehicles with sensors of different modalities: U.S.A, US20140032012 A1[P/OL].(2014-01-30)[2014-03-27].http://appft1.uspto.gov/netacgi/nph-Parser?Sect1=PTO1&Sect2=HITOFF&d=PG01&p=1&u=/netahtml/PTO/srchnum.html&r=1&f=G&l=50&s1=20140032012.PGNR. [3] 王金川,黄雪梅,郝圆.一种改进的医学图像目标轮廓跟踪算法[J].现代制造工程, 2012(10):33-36.WANG Jinchuan, HUANG Xuemei, HAO Yuan.An improved algorithm on objects boundary tracking of medical image[J].Modern Manufacturing Engineering, 2012(10):33-36. [4] Yilmaz A, Javed O, Shah M.Object tracking: A survey[J].ACM Computing Surveys, 2006, 38(4):13. [5] Ross D A, Lim J, Lin R S, et al.Incremental learning for robust visual tracking[J].International Journal of Computer Vision, 2008, 77(1-3):125-141. [6] Jepson A D, Fleet D J, El-Maraghi T F.Robust online appearance models for visual tracking[J].Pattern Analysis and Machine Intelligence, 2003, 25(10):1296-1311. [7] 孙晓燕,常发亮.梯度特征稀疏表示目标跟踪[J].光学精密工程, 2013, 21(12): 3191-3197.SUN X Y, CHANG F L.Object tracking based on sparse representation of gradient feature[J].Optics and Precision Engineering, 2013, 21(12):3191-3197. [8] 杨大为,丛杨,唐延东.基于粒子滤波与稀疏表达的目标跟踪方法[J].模式识别与人工智能, 2013, 26(7): 680-687.YANG Dawei, CONG Yang, TANG Yandong.Object Tracking method based on particle filter and sparse representation[J].Pattern Recognition and Artificial Intelligence, 2013, 26(7):680-687. [9] He R, Hu B G, Zheng W S, et al.Two-stage sparse representation for robust recognition on large-scale database[C]//The Association for the Advancement of Artificial Intelligence Conference, Atlanta, USA:AAIC, 2010:1-10. [10] 林哲,闫敬文,袁野.基于稀疏表示和PCNN的多模态图像融合[J].山东大学学报:工学版, 2013, 43(4):13-17.LIN Zhe, YAN Jingwen, Yuan Ye.Multi-modality image fusion based on sparse representation and PCNN[J].Journal of Shan Dong University:Engineering Science, 2013, 43(4):13-17. [11] Mei X, Ling H.Robust visual tracking and vehicle classification via sparse representation[J].Pattern Analysis and Machine Intelligence, 2011, 33(11):2259-2272. [12] Wu Y, Blasch E, Chen G, et al.Multiple source data fusion via sparse representation for robust visual tracking[C]//IEEE International Conference on Information Fusion, Chicago, USA:IEEE, 2011:1-8. [13] Han Z, Jiao J, Zhang B, et al.Visual object tracking via sample-based Adaptive Sparse Representation[J].Pattern Recognition, 2011, 44(9):2170-2183. [14] He S, Yang Q, Lau R W H, et al.Visual tracking via locality sensitive histograms[C]//IEEE Conference on Computer Vision and Pattern Recognition, Portland, USA:IEEE, 2013:2427-2434. [15] Wright J, Yang A Y, Ganesh A, et al.Robust face recognition via sparse representation[J].Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2009, 31(2): 210-227. [16] Mei X, Ling H.Robust visual tracking using L1 minimization[C]//IEEE International Conference on Computer Vision, Kyoto, Japan:IEEE, 2009: 1436-1443. [17] Mei X, Ling H, Wu Y, et al.Minimum error bounded efficient l 1 tracker with occlusion detection[C]//IEEE Conference on Computer Vision and Pattern Recognition, Colorado Springs, USA:IEEE, 2011:1257-1264. [18] Doucet A, De Freitas N, Gordon N.Sequential Monte Carlo methods in practice[M].New York: Springer, 2001. [19] 白笛,张冰,朱志宇.目标跟踪的自适应双重采样粒子滤波算法[J].计算机科学, 2013, 40(3):248-262.BAI Di, ZHANG Bing, ZHU Zhiyu.Adaptive double-resampling particle filter algorithm for target tracking[J].Computer Science, 2013, 40(3):248-262. [20] Centir M, Fragneto P, Denaro D, et al.A combined color-correlation visual model for object tracking using particle filters[C]//International symposia on Image and Signal Processing and Analysis, Trieste, Italy:[s.n.], 2013:153-158. [21] Bao C, Wu Y, Ling H, et al.Real time robust l1 tracker using accelerated proximal gradient approach[C]//The IEEE Conference on Computer Vision and Pattern Recognition, Rhode Island, USA:IEEE, 2012:1830-1837. |
[1] | 马帅依凡,赵子健. 基于人工标记的手术导航仪[J]. 山东大学学报(工学版), 2017, 47(3): 63-68. |
[2] | 侯明冬,王印松,田杰. 积分时滞对象的一种内模PID鲁棒控制方法[J]. 山东大学学报(工学版), 2016, 46(5): 64-67. |
[3] | 王海军,葛红娟,张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J]. 山东大学学报(工学版), 2016, 46(3): 14-22. |
[4] | 张井岗, 马文廷, 赵志诚. 串级时滞过程的二自由度Smith预估控制[J]. 山东大学学报(工学版), 2015, 45(5): 43-50. |
[5] | 郭志波, 董健, 庞成. 多技术融合的Mean-Shift目标跟踪算法[J]. 山东大学学报(工学版), 2015, 45(2): 10-16. |
[6] | 邱晓欣1,2,张文强1,2*,秦晋贤1,2,杜正阳1,2,张德峰1,2. 恶劣环境下多目标实时跟踪算法研究[J]. 山东大学学报(工学版), 2014, 44(2): 21-27. |
[7] | 李武,侯志强*,魏国剑,余旺盛. 跟踪框自适应的尺度变化目标跟踪算法[J]. 山东大学学报(工学版), 2014, 44(2): 28-34. |
[8] | 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5. |
[9] | 赵占山1,2, 张静3, 孙连坤1, 丁刚1. 有限时间收敛的滑模自适应控制器设计[J]. 山东大学学报(工学版), 2012, 42(4): 74-78. |
[10] | 周长辉1, 胡永健2,余绍鹏1. 鲁棒的源扫描仪辨识算法设计[J]. 山东大学学报(工学版), 2011, 41(2): 62-65. |
[11] | 黄斌. 基于离散趋近律的变结构系统控制[J]. 山东大学学报(工学版), 2011, 41(1): 45-48. |
[12] | 李岳阳,王士同. 基于鲁棒性神经模糊网络的脉冲噪声滤波算法[J]. 山东大学学报(工学版), 2010, 40(5): 164-170. |
[13] | 方 挺,杨 忠,沈春林 . 无人机编队视频序列中的多目标精确跟踪[J]. 山东大学学报(工学版), 2008, 38(4): 22-26 . |
[14] | 赵永国,贾磊,蔡文剑 . 一种积分过程PID自整定方法[J]. 山东大学学报(工学版), 2008, 38(1): 48-51 . |
[15] | 解淑英,张承进 . 一种输入饱和受限系统的自适应逆控制[J]. 山东大学学报(工学版), 2006, 36(6): 62-66 . |
|