您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2010, Vol. 40 ›› Issue (5): 159-163.

• 论文 • 上一篇    下一篇

一种基于概念格的用户兴趣预测方法

茅琴娇1,冯博琴1,李燕1,2,潘善亮3   

  1. 1. 西安交通大学电子与信息工程学院, 陕西 西安 710049; 2. 西安理工大学计算机科学与工程学院,陕西 西安 710049;
    3. 宁波大学计算机科学与技术学院, 浙江 宁波 315211
  • 收稿日期:2010-05-25 出版日期:2010-10-16 发布日期:2010-05-25
  • 作者简介:茅琴娇(1983-),女,博士研究生,主要研究方向为数据挖掘、个性化建模等.Email:maoqinjiao@163.com
  • 基金资助:

    国家高技术研究发展计划资助项目(2008AA01Z131,2008AA01Z136);国家自然科学基金资助项目(60773072);宁波市自然科学基金资助项目(2004A610004)

A novel users’ interests prediction approach based on concept lattice

MAO Qin-jiao1, FENG Bo-qin1, LI Yan1,2, PAN Shan-liang3   

  1. 1. School of Electronics and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China;
    2. Department of Computer Science and Engineering, Xi’an Sci-Tech University,Xi’an 710049, China;
    3. Department of Computer Science and Engineering, Ningbo university, Ningbo 315211,china
  • Received:2010-05-25 Online:2010-10-16 Published:2010-05-25

摘要:

传统协作过滤方法将用户所有属性不加区分地用于计算相似度寻找最近邻,推荐效果不太理想。本文提出了一种基于概念格的用户兴趣预测算法。首先,从用户访问日志中抽取用户资源访问的形式背景,构建该形式背景的概念格;其次,选择合适的滑动窗口来限定用户的当前访问内容,据此识别出用户当前的独立偏好;最后分别计算独立偏好对待排序文档的推荐效用,通过加权计算用户当前所有兴趣所反映的个性化资源偏好,进行用户兴趣预测。该方法分析了传统方法中没有考虑的文档独立性,从而有效地识别和划分用户偏好,符合用户之间仅仅在某一方面或者某一兴趣上相似、而并非所有兴趣都相似这一特点。实验采用真实的日志数据。结果表明:该方法能够有效地实现资源推荐,且可以减轻传统协作过滤方法的冷启动问题。

关键词: 协作过滤, 概念格, 个性化推荐, 决策理论

Abstract:

Traditional collaborative filtering methods calculate users’ similarity to find the nearest neighbors without distinguishing their attributions, and the recommendation seems to be inefficient. A concept lattice based users’ interests prediction algorithm was presented as follows: first, formal context about the user-navigation was extracted from the user access logs, and the concept lattice was built from it; second, an appropriate sliding window was used to limit the user's current access content, thus could identify the user's current independent preferences; at last,the recommendation utilities of documents were calculated according to the independently preferences, and the weighted sum was used to get the personal preferences reflect by all the current interests to predict users’ interests. This method analyzed the issue of classification between documents in the traditional methods,thus users’ preferences could be effectively identified and divided, which coincide in characteristics that users were similar only in certain aspects, but not all the features of interests. Experiment on real log data proved the effectiveness in resource recommendation, and the cold start problem in the traditional collaborative filtering methods could be smoothed.
 

Key words: collaborative filtering, concept lattice, personalized recommendation, decision making theory

[1] 读习习,刘华锋,景丽萍. 一种融合社交网络的叠加联合聚类推荐模型[J]. 山东大学学报(工学版), 2018, 48(3): 96-102.
[2] 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79.
[3] 肖卓宇,何锫,余波,黎妍,胡振涛. 基于FCA与CBR的设计模式检测[J]. 山东大学学报(工学版), 2016, 46(2): 22-28.
[4] 王爱国,李廉*,杨静,陈桂林. 一种基于Bayesian网络的网页推荐算法[J]. 山东大学学报(工学版), 2011, 41(4): 137-142.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!