您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2016, Vol. 46 ›› Issue (2): 22-28.doi: 10.6040/j.issn.1672-3961.1.2015.046

• 机器学习与数据挖掘 • 上一篇    下一篇

基于FCA与CBR的设计模式检测

肖卓宇1,何锫2,余波1,黎妍3,胡振涛1   

  1. 1. 中南林业科技大学涉外学院, 湖南 长沙 410200;2. 广州大学计算机科学与教育软件学院, 广东 广州 510006;3. 湖南高速公路管理局, 湖南 长沙 410209
  • 收稿日期:2015-05-12 出版日期:2016-04-20 发布日期:2015-05-12
  • 作者简介:肖卓宇(1979— ),男,湖南长沙人,副教授,高级工程师,硕士,主要研究方向为程序理解,逆向工程与数据挖掘. E-mail: xzyxzy0770@126.com
  • 基金资助:
    国家自然科学基金资助项目(61170199);湖南省教育厅重点基金资助项目(11A004);湖南省大学生研究性学习和创新性实验计划资助项目(湘教通[2015]84号197);广东省自然科学基金资助项目(2015A030313501);中南林业科技大学教学改革资助项目(201509,201611)

Design patterns detection based on FCA and CBR

XIAO Zhuoyu1, HE Pei2, YU Bo1, LI Yan3, HU Zhentao1   

  1. 1. Swan College, Central South University of Forestry and Technology, Changsha 410200, Hunan, China;
    2. School of Computer Science &
    Education, Guangzhou University, Guangzhou 510006, Guangdong, China;
    3. Hunan Highway Administration Bureau, Changsha 410209, Hunan, China
  • Received:2015-05-12 Online:2016-04-20 Published:2015-05-12

摘要: 以一个精确可靠的设计模式检测模型为目标,结合形式概念分析(formal concept analysis, FCA)与实例推理(case based reasoning, CBR)技术,提出一种基于更完整问题描述的改进技术模型,通过FCA与余弦理论思想计算特征指标与相近案例的相似性值Score,对其结果进行优先级排序,并取得最优选择之后,将其匹配的特征结果存储到学习模型的保存过程阶段。最后,给出一种基于平均精度MAP的性能评估方法模型。试验结果表明,该检测模型较传统的检测模型在性能上有较大改进。

关键词: 实例推理, 平均精度, 概念格, 典型特征值, 设计模式检测, 形式概念分析

Abstract: Aiming to obtain the accurate and reliable detecting model of design patterns that fusion formal concept analysis(FCA)techniques and case cased reasoning(CBR), a novel refinement technique based on more complete software problem description was proposed. Indexes and cases similarity score value was calculated by FCA and Cosine theory. The results of the priority achieved optimal choices, the new knowledge for the retention process phase of the learning model was provided. An approach based on mean average precision(MAP)to assess the performance was proposed. Finally, the experimental results showed that the presented model had more detecting ability in term of MAP comparing to the traditional models.

Key words: case based reasoning, mean average precision, concept lattice, formal concept analysis, design pattern detection, typical feature value

中图分类号: 

  • TP311
[1] ERICH Gamma. Design pattern[M]. Beijing:China Machine Press, 2000:1-22.
[2] AMPATZOGLOU A, FRANTZESKOU G, STAMELOS I. A methodology to assess the impact of design patterns on software quality[J]. Information and Software Technology, 2012, 54(4):331-346.
[3] ISSAOUI I, BOUASSIDA N, BEN-ABDALLAH H. Using metric-based filtering to improve design pattern detection approaches[J]. Innovations in Systems and Software Engineering, 2015, 11(1):39-53.
[4] ISSAOUI I, BOUASSIDA N, BEN-ABDALLAH H. A new approach for interactive design pattern recommendation[J]. Lecture Notes on Software Engineering, 2015, 3(3):173-178.
[5] DONG J, ZHAO Y, PENG T. A review of design pattern mining techniques[J]. International Journal of Software Engineering and Knowledge Engineering(IJSEKE), 2009, 16(6):823-855.
[6] DONGJING Y, GE J, WU W. Detection of design pattern instances based on graph isomorphism[C] //Proc 4th IEEE International Conference on Software Engineering and Service Science(ICSESS).Beijing,China:IEEE Computer Society, 2013:874-877.
[7] RASOOL G, MADER P. A customizable approach to design patterns recognition based on feature types[J]. Arabian Journal for Science and Engineering, 2014, 39(12):8851-8873.
[8] PETTERSON N, LOWE W, NIVRE J. Evaluation of accuracy in design pattern occurrence detection[J]. IEEE Transactions on Software Engineering, 2010, 36(4):575-590.
[9] BOUASSIDA N, BEN-ABDALLAH H, ISSAOUI I. Evaluation of an automated multi-phase approach for patterns discovery[J]. International Journal of Software Engineering and Knowledge Engineering, 2013, 23(10):1367-1398.
[10] RASOOL G, PHILIPPOW I. Design pattern recovery based on annotations[J]. Advances in Engineering Software, 2010, 36(41):519-526.
[11] SABO M,PORUB DJ. Preserving design patterns using source code annotations[J]. Journal of Computer Science and Control Systems, 2009, 34(2):53-56.
[12] GU-EH-ENEUC Y G, ANTONIOL G.DEMIMA: a multilayered approach for design pattern identication[J]. IEEE Transactions on Software Engineering, 2008, 34(5): 667-684.
[13] CALLVGN A, TRAMONTANA E. Delivering dependable reusable components by expressing and enforcing design decisions [C] //Proceedings of Computer Software and Applications Conference(COMPSAC)Workshop QUORS. Kyoto, Japan:IEEE Computer Society, 2013:493-498.
[14] 肖卓宇,何锫,黎妍.基于设计模式角色的附加关系检测研究[J].计算机应用研究, 2015,32(7):2042-2045. XIAO Zhuoyu, HE Pei, LI Yan. Study on the additional relationships based on design pattens's roles[J]. Application Research of Computers, 2015, 32(7):2042-2045.
[15] STENCEL K,WEGRZYNOWICZ P. Detection of diverse design pattern variants[C] //15th Asia-Pacific Software Engineering Conference. Beijing, China: IEEE Computer Society, 2008:51-57.
[16] ALIAKSANDR B, ENRICO B,PAOLO G. Choosing the right design pattern: the implicit culture approach [C] //Proceedings of the Workshop on Multi-Agent Systems and Simulation at the Industrial Simulation Conference 2006(ISC-2006). Trento, Italy:RoMEO, 2006:71-81.
[17] YATES B, BERTHIER R. Modern information retrieval[M]. New Jersey: Addison Wesley, 1999:17-35.
[18] LUCIA A D, DEUFEMIA V, GRAVINO C, et al. Design pattern recovery through visual language parsing and source code analysis[J]. Journal of Systems and Software, 2010, 82(7):1177-1193.
[19] LUCIA A D, DEUFEMIA V, GRAVINO C, et al. Behavioral Pattern Identification through Visual Language Parsing and Code Instrumentation[C] //Proceedings of European Conference on Software Maintenance and Reengineering. Kaiserslautern, Germany: IEEE Computer Society, 2009:99-108.
[20] 杜辉, 叶文华, 楼佩煌. 基于实例推理技术在模块变型设计中的应用研究[J]. 山东大学学报(工学版), 2011,41(1):78-85. DU Hui, YE Wenhua, LOU Peihuang. Application research on CBR technology used in modular variant design[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):78-85.
[21] UTA PRISS. Formal concept analysis in information Science[J]. Annual Review of Information Science and Technology, 2006, 40(3):1-22.
[22] BELEN D, ANTONIO M G, PABLO P G, et al. Formal concept analysis for knowledge refinement in case base reasoning[C] //In Proc of the 25th International Conference on Innovative Techniques and Applications of Artificial Intelligence. Cambridge, UK: SGAI, 2005:233-245.
[23] RALPH B,KOLODNER J. Representation in case based reasoning[J].Knowledge Engineering Review, 2005, 20(1):209-213.
[24] PRAMANIK S, MONDAL K. Cosine similarity measure of rough neutrosophic sets and its application in medical diagnosis[J]. Global Journal of Advanced Research, 2015, 2(1):212-220.
[25] MOHD Sanusi AZMI, MOHAMAD Faidzul Nasrudin, KHAIRUDDIN Omar, et al. Farsi/arabic digit class-ification using triangle based model features with ranking measures[C] //2012 International Conference on Network and Computational Intelligence(ICNCI 2012). Singapore City, Singapore:IACSIT, 2012:91-97.
[1] 杜辉1,2,叶文华1,楼佩煌1. 基于实例推理技术在模块变型设计中的应用研究[J]. 山东大学学报(工学版), 2011, 41(1): 78-85.
[2] 茅琴娇1,冯博琴1,李燕1,2,潘善亮3. 一种基于概念格的用户兴趣预测方法[J]. 山东大学学报(工学版), 2010, 40(5): 159-163.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程代展,李志强. 非线性系统线性化综述(英文)[J]. 山东大学学报(工学版), 2009, 39(2): 26 -36 .
[2] 王勇, 谢玉东.

大流量管道煤气的控制技术研究

[J]. 山东大学学报(工学版), 2009, 39(2): 70 -74 .
[3] 刘新1 ,宋思利1 ,王新洪2 . 石墨配比对钨极氩弧熔敷层TiC增强相含量及分布形态的影响[J]. 山东大学学报(工学版), 2009, 39(2): 98 -100 .
[4] 田芳1,张颖欣2,张礼3,侯秀萍3,裘南畹3. 新型金属氧化物薄膜气敏元件基材料的开发[J]. 山东大学学报(工学版), 2009, 39(2): 104 -107 .
[5] 陈华鑫, 陈拴发, 王秉纲. 基质沥青老化行为与老化机理[J]. 山东大学学报(工学版), 2009, 39(2): 125 -130 .
[6] 赵延风1,2, 王正中1,2 ,芦琴1,祝晗英3 . 梯形明渠水跃共轭水深的直接计算方法[J]. 山东大学学报(工学版), 2009, 39(2): 131 -136 .
[7] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[8] 赵科军 王新军 刘洋 仇一泓. 基于结构化覆盖网的连续 top-k 联接查询算法[J]. 山东大学学报(工学版), 2009, 39(5): 32 -37 .
[9] 赵治广,王登杰,田云飞 . 基于灰色理论的路基沉降研究[J]. 山东大学学报(工学版), 2007, 37(3): 86 -88 .
[10] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .