您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (3): 7-10.

• 机器学习与数据挖掘 • 上一篇    下一篇

一种支持向量机参数选择的改进分布估计算法

王雪松 程玉虎 郝名林   

  1. 中国矿业大学信息与电气工程学院, 江苏 徐州 221116
  • 收稿日期:2009-05-10 出版日期:2009-06-16 发布日期:2009-06-16
  • 作者简介:王雪松(1974-), 女, 安徽泗县人, 副教授, 博士, 主要从事智机器学习研究.E-mail: wangxuesongcumt@163.com
  • 基金资助:

    国家自然科学基金资助项目(60804022);教育部新世纪优秀人才支持计划资助项目(NCET-08-0836);高等学校博士学科点专项科研基金资助项目(20070290537,200802901506);江苏省自然科学基金资助项目(BK2008126)

Parameters selection of a support vector machine using an improved estimation of the distribution algorithm

  1. School of Information and Electrical Engineering, China University of Mining and Technology, Xuzhou 221116, China
  • Received:2009-05-10 Online:2009-06-16 Published:2009-06-16

摘要:

支持向量机(support vector machine,SVM)的学习性能和泛化能力在很大程度上取决于参数的合理设置. 将支持向量机的参数选择问题转化为优化问题,以模型预测均方根误差为评价函数,提出一种引入混沌变异操作的改进分布估计算法(estimation of distributionalgorithm,EDA),并将其用于优化求解ε-支持向量机的参数:惩罚因子、不敏感损失系数以及高斯径向基核函数的宽度. 由于改进EDA利用混沌运动的随机性和遍历性等特点在解空间内进行优化搜索,能够较好解决传统EDA易于陷入局部极小的缺陷. Chebyshev混沌时间序列预测仿真结果表明:改进EDA是选取SVM参数的有效方法.

关键词: 支持向量机;参数选择;混沌变异;分布估计算法

Abstract:

The learning performance and the generalization property of support vector machines (SVMs) are greatly  influenced by the suitable setting of some parameters. The parameters selection can be transformed into an optimization problem by defining the root mean square error of a SVM prediction model as an evaluation function. A kind of improved estimation of the distribution algorithm (EDA) with a chaotic-mutation operation was proposed and used to optimize parameters of a ε-SVM including a penalty factor, an insensitive loss coefficient and a width of a Gaussian kernel function. The improved EDA could take advantage of the randomness and ergodicity of chaos, which  could  solve the local minima problem of traditional EDAs. Simulation result of the prediction of a Chebyshev chaotic time series showed that the improved EDA was an effective method of solving the problem for parameters selection of a SVM.

Key words: support vector machine; parameters selection; chaotic-mutation; estimation of distribution algorithm

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!