山东大学学报(工学版) ›› 2009, Vol. 39 ›› Issue (3): 7-10.
王雪松 程玉虎 郝名林
摘要:
支持向量机(support vector machine,SVM)的学习性能和泛化能力在很大程度上取决于参数的合理设置. 将支持向量机的参数选择问题转化为优化问题,以模型预测均方根误差为评价函数,提出一种引入混沌变异操作的改进分布估计算法(estimation of distributionalgorithm,EDA),并将其用于优化求解ε-支持向量机的参数:惩罚因子、不敏感损失系数以及高斯径向基核函数的宽度. 由于改进EDA利用混沌运动的随机性和遍历性等特点在解空间内进行优化搜索,能够较好解决传统EDA易于陷入局部极小的缺陷. Chebyshev混沌时间序列预测仿真结果表明:改进EDA是选取SVM参数的有效方法.
No related articles found! |
|