白树忠1,2, 刘 琚2,孙国霞2
An algorithm for under-determined blind source separation based on the least-mean-square error and sparse features
BAI Shu-zhong 1,2, LIU Ju2, SUN Guo-xia2
摘要: 针对欠定条件下的盲源分离问题,即观测信号个数小于信源个数的情况,提出了一种基于最小均方误差和稀疏特征的算法.首先,利用变换后信源的稀疏特征,采用一新的势函数通过聚类算法估计混叠矩阵.然后利用混叠矩阵和信源自身的相关性,通过寻找信源在聚类方向时间点上的精确值,以均方误差最小为准则寻找最佳分离矩阵实现信源的分离,克服了传统的分离算法在寻找最佳分离子矩阵方面的缺点.仿真结果显示使用该方法分离的信号具有更高的信噪比,和其他同类方法相比具有更优越的分离性能.
中图分类号:
| [1] | 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27. |
| [2] | 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20. |
| [3] | 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50. |
| [4] | 李新玉, 徐桂云, 任世锦, 杨茂云. 基于鉴别流形的不相关稀疏投影非负矩阵分解[J]. 山东大学学报(工学版), 2015, 45(5): 1-12. |
|
||