您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 论文 • 上一篇    下一篇

基于最小均方误差和稀疏特征的欠定盲源分离

白树忠1,2, 刘 琚2,孙国霞2   

  1. 1. 山东大学电气工程学院, 山东 济南 250061;2. 山东大学信息科学与工程学院, 山东 济南 250100
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-08-16 发布日期:2008-08-16
  • 通讯作者: 白树忠

An algorithm for under-determined blind source separation based on the least-mean-square error and sparse features

BAI Shu-zhong 1,2, LIU Ju2, SUN Guo-xia2   

  1. 1. School of Electrical Engineering, Shandong University, Jinan 250061, China;2. School of Information Science and Engineering, Shandong University, Jinan 250100, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2008-08-16 Published:2008-08-16
  • Contact: BAI Shu-zhong

摘要: 针对欠定条件下的盲源分离问题,即观测信号个数小于信源个数的情况,提出了一种基于最小均方误差和稀疏特征的算法.首先,利用变换后信源的稀疏特征,采用一新的势函数通过聚类算法估计混叠矩阵.然后利用混叠矩阵和信源自身的相关性,通过寻找信源在聚类方向时间点上的精确值,以均方误差最小为准则寻找最佳分离矩阵实现信源的分离,克服了传统的分离算法在寻找最佳分离子矩阵方面的缺点.仿真结果显示使用该方法分离的信号具有更高的信噪比,和其他同类方法相比具有更优越的分离性能.

关键词: 稀疏性, 欠定分离, 最小均方误差

Abstract: An algorithm was presented based on the least-mean-square error and sparse features for under-determined blind source separation, i.e., observed signal numbers are less than sources numbers., Based on clustering method, the mixing matrix was first estimated by a new potential function using the sparseness of sources. By using the estimated mixing matrix and the self-correlation of sources and searching the accurate values at the source clustering directions, the optimal sub-matrix for separation was obtained according to the least-mean-square error criterion. This can overcome the disadvantages of traditional algorithm in searching the optimal sub-matrix. Simulation results show the separated signals have higher SNR, and the proposed approach has better separation performance compared with the other similar methods.

Key words: sparseness, under-determined separation, the least-mean-square error

中图分类号: 

  • TN911.7
[1] 魏波,张文生,李元香,夏学文,吕敬钦. 一种选择特征的稀疏在线学习算法[J]. 山东大学学报(工学版), 2017, 47(1): 22-27.
[2] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[3] 张佳,林耀进,林梦雷,刘景华,李慧宗. 基于信息熵的协同过滤算法[J]. 山东大学学报(工学版), 2016, 46(2): 43-50.
[4] 李新玉, 徐桂云, 任世锦, 杨茂云. 基于鉴别流形的不相关稀疏投影非负矩阵分解[J]. 山东大学学报(工学版), 2015, 45(5): 1-12.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!