山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 121-127.doi: 10.6040/j.issn.1672-3961.0.2017.606
董满1,2,刘淑琴1,2*
DONG Man1,2, LIU Shuqin1,2*
摘要: 针对锂电池的非线性特性,提出电池状态模型在不同循环次数、不同温度下的具体改进方法;提出安时积分法和无迹卡尔曼滤波算法结合的锂电池荷电状态(state of charge, SOC)复合估计算法,分析新算法的收敛速度、估计精度以及算法复杂度。试验表明,这种复合算法复杂度低,精度高,能快速实现锂电池SOC的准确估计,估算误差为4.036 2%,适合实时在线计算。
中图分类号:
[1] 林成涛, 陈全世, 王军平,等. 用改进的安时计量法估计电动汽车动力电池SOC[J]. 清华大学学报(自然科学版), 2006, 46(2): 247-251. LIN Chengtao, CHEN Quanshi, WANG Junping, et al. Improved Ah counting method for state of charge estimation of electric vehicle batteries[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(2): 247-251. [2] 于海芳, 逯仁贵, 朱春波,等. 基于安时法的镍氢电池SOC估计误差校正[J]. 电工技术学报, 2012, 27(6): 12-18. YU Haifang, LU Rengui, ZHU Chunbo, et al. State of charge estimation calibration for Ni-MH battery based on ampere-hour method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 12-18. [3] 郏航. 电动汽车电池电量监测系统的研究与实现[D]. 北京:清华大学, 1996. JIA Hang. Research and implementation of battery monitoring system for electric vehicle[D]. Beijing: Tsinghua University, 1996. [4] 鲍慧, 于洋. 基于安时积分法的电池SOC估算误差校正[J]. 计算机仿真, 2013, 30(11): 148-159. BAO Hui, YU Yang. State of charge estimation calibratio based on ampere-hour method [J]. Computer Simulation, 2013, 30(11): 148-159. [5] 林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用[J]. 电池, 2004, 34(5): 376-378. LIN Chengtao, WANG Junping, CHEN Quanshi. Methods for state of charge estimation of EV batteries and their application[J]. Battery Bimonthly, 2004, 34(5): 376-378. [6] HE H, ZHANG X, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithiumion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318. [7] 李革臣, 古艳磊. 电化学阻抗谱法预测锂电池荷电状态[J]. 电源技术, 2008, 32(9): 599-602. LI Gechen, GU Yanlei. SOC of lithiumion rechargeable battery predicted by electrochemical impedance spectronscopy[J].Chinese Journal of Power Source, 2008, 32(9):599-602. [8] 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. SUN Dong, CHEN Xikun. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191. [9] 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报(自然科学版), 2010(8): 1293-1296. LI Zhe, LU Languang, OUYANG Minggao. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University(Science and Technology), 2010(8): 1293-1296. [10] 雷肖, 陈清泉, 刘开培,等. 电动车蓄电池荷电状态估计的神经网络方法 [J]. 电工技术学报, 2007, 22(8): 155-160. LEI Xiao, CHEN Qingquan, LIU Kaipei, et al. Battery state of charge estimation based on neural-network for electric vehicles[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 150-160. [11] 刘浩. 基于EKF的电动汽车用锂离子电池SOC估算方法研究[D]. 北京:北京交通大学, 2010. LIU Hao. Study on SOC estimation method of lithium-ion battery based on EKF for electric vehicles[D]. Beijing: Beijing Jiaotong University, 2010. [12] 袁学庆, 张阳, 赵林,等. 基于EKF的锂电池SOC估算与试验研究[J]. 电源技术, 2015, 39(12): 2587-2589. YUAN Xueqing, ZHANG Yang, ZHAO Lin, et al. Li-ion battery SOC estimation and test research based on EKF[J].Chinese Journal of Power Source, 2015, 39(12): 2587-2589. [13] 冯光. 基于EKF的锂离子电池SOC估算的建模与仿真[D]. 武汉:武汉理工大学, 2013. FENG Guang. Modeling and simulation based on EKF lithium-ion battery SOC estimation[D]. Wuhan: Wuhan University of Technology, 2013. [14] 李建成, 戴瑜兴, 全惠敏,等. 基于改进Kalman滤波和安时积分的SOC复合估算[J]. 电源技术, 2014(12): 2267-2269. LI Jiancheng, DAI Yuxing, QUAN Huimin, et al. SOC estimating method based on improved Kalman filter and AH integrator[J]. Chinese Journal of Power Source, 2014(12): 2267-2269. [15] 陈息坤, 孙冬, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计 [J]. 电工技术学报, 2015, 30(15):141-147. CHEN Xikun, SUN Dong, CHEN Xiaohu. Modeling and state of charge robust estimation for lithium-ion batteries[J].Transactions of China Electrotechnical Society, 2015, 30(15): 141-147. [16] 高明煜, 何志伟, 徐杰. 基于采样点卡尔曼滤波的动力电池SOC估计[J]. 电工技术学报, 2011, 26(11): 161-167. GAO Mingyu, HE Zhiwei, XU Jie. Sigma point Kalman filter based SOC estimation for power supply battery [J].Transactions of China Electrotechnical Society, 2011, 26(11):161-167. [17] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118. LIU Yi, TAN Guojun, HE Xiaoqun. Optimized battery model based adaptive Sigma Kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118. [18] 刘金枝, 杨鹏, 李练兵. 一种基于能量建模的锂离子电池电量估算方法[J]. 电工技术学报, 2015, 30(13): 100-107. LIU Jinzhi, YANG Peng, LI Lianbing. A method to estimate the capacity of the lithium-ion battery based on energy model[J].Transactions of China Electrotechnical Society, 2015, 30(13):100-107. [19] 刘新天, 何耀, 曾国建,等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163. LIU Xintian, HE Yao, ZENG Guojian, et al. State-of-power estimation for li-ion battery considering the effect of temperature [J]. Transactions of China Electrotechnical Society, 2016, 31(13):155-163. [20] LI J, BARILLAS J K, GUENTHER C, et al. A comparative study of state of charge estimation algorithms for LiFePO4, batteries used in electric vehicles[J]. Journal of Power Source, 2013, 230(10): 244-250. [21] SEAMAN A, MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation [J]. Journal of Power Sources, 2014, 256(3): 410-423. |
No related articles found! |
|