您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (2): 121-127.doi: 10.6040/j.issn.1672-3961.0.2017.606

• • 上一篇    下一篇

基于UKF和AH法的磁悬浮人工心脏泵用锂电池SOC估计复合算法

董满1,2,刘淑琴1,2*   

  1. 1. 山东大学电气工程学院, 山东 济南 250061;2. 山东省磁悬浮轴承工程技术研究中心, 山东 济南 250061
  • 收稿日期:2017-12-13 出版日期:2018-04-20 发布日期:2017-12-13
  • 通讯作者: 刘淑琴(1958— ),女,山东济宁人,教授,博士,主要研究方向为磁悬浮轴承理论及应用. E-mail: lshuqin@sdu.edu.cn E-mail:1215120219@qq.com
  • 作者简介:董满(1992— ),男,湖北武汉人,硕士研究生,主要研究方向为心脏泵信号检测. E-mail:1215120219@qq.com
  • 基金资助:
    山东省2017年重点研发资助项目(2017GSF221009)

A compound algorithm for SOC estimation of lithium batteries for magnetic suspension artificial heart pump based on UKF and AH

DONG Man1,2, LIU Shuqin1,2*   

  1. 1. School of Electrical Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. Shandong Magnetic Bearing Technology Center, Jinan 250061, Shandong, China
  • Received:2017-12-13 Online:2018-04-20 Published:2017-12-13

摘要: 针对锂电池的非线性特性,提出电池状态模型在不同循环次数、不同温度下的具体改进方法;提出安时积分法和无迹卡尔曼滤波算法结合的锂电池荷电状态(state of charge, SOC)复合估计算法,分析新算法的收敛速度、估计精度以及算法复杂度。试验表明,这种复合算法复杂度低,精度高,能快速实现锂电池SOC的准确估计,估算误差为4.036 2%,适合实时在线计算。

关键词: 无迹卡尔曼滤波, 安时积分法, 锂电池荷电状态, 状态模型, 复合算法

Abstract: Based on the nonlinear system, an improved state model was proposed in different cycles and different temperatures; based on unscented Kalman filter and ampere-hour(AH)integral method, a compound algorithm and its concrete implementation steps were proposed for SOC estimation; the convergence speed, estimation accuracy and complexity of the new algorithm were analyzed. The experimental results showed that the complexity of this algorithm was low and the accurate estimation of SOC could be realized quickly, the estimation error was 4.036 2%, and was suitable for real-time on-line computation.

Key words: charge state of lithium batteries, AH integral method, state model, unscented Kalman filter, compound algorithm

中图分类号: 

  • TM912
[1] 林成涛, 陈全世, 王军平,等. 用改进的安时计量法估计电动汽车动力电池SOC[J]. 清华大学学报(自然科学版), 2006, 46(2): 247-251. LIN Chengtao, CHEN Quanshi, WANG Junping, et al. Improved Ah counting method for state of charge estimation of electric vehicle batteries[J]. Journal of Tsinghua University(Science and Technology), 2006, 46(2): 247-251.
[2] 于海芳, 逯仁贵, 朱春波,等. 基于安时法的镍氢电池SOC估计误差校正[J]. 电工技术学报, 2012, 27(6): 12-18. YU Haifang, LU Rengui, ZHU Chunbo, et al. State of charge estimation calibration for Ni-MH battery based on ampere-hour method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 12-18.
[3] 郏航. 电动汽车电池电量监测系统的研究与实现[D]. 北京:清华大学, 1996. JIA Hang. Research and implementation of battery monitoring system for electric vehicle[D]. Beijing: Tsinghua University, 1996.
[4] 鲍慧, 于洋. 基于安时积分法的电池SOC估算误差校正[J]. 计算机仿真, 2013, 30(11): 148-159. BAO Hui, YU Yang. State of charge estimation calibratio based on ampere-hour method [J]. Computer Simulation, 2013, 30(11): 148-159.
[5] 林成涛, 王军平, 陈全世. 电动汽车SOC估计方法原理与应用[J]. 电池, 2004, 34(5): 376-378. LIN Chengtao, WANG Junping, CHEN Quanshi. Methods for state of charge estimation of EV batteries and their application[J]. Battery Bimonthly, 2004, 34(5): 376-378.
[6] HE H, ZHANG X, XIONG R, et al. Online model-based estimation of state-of-charge and open-circuit voltage of lithiumion batteries in electric vehicles[J]. Energy, 2012, 39(1): 310-318.
[7] 李革臣, 古艳磊. 电化学阻抗谱法预测锂电池荷电状态[J]. 电源技术, 2008, 32(9): 599-602. LI Gechen, GU Yanlei. SOC of lithiumion rechargeable battery predicted by electrochemical impedance spectronscopy[J].Chinese Journal of Power Source, 2008, 32(9):599-602.
[8] 孙冬, 陈息坤. 基于离散滑模观测器的锂电池荷电状态估计[J]. 中国电机工程学报, 2015, 35(1): 185-191. SUN Dong, CHEN Xikun. Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J]. Proceedings of the CSEE, 2015, 35(1): 185-191.
[9] 李哲, 卢兰光, 欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报(自然科学版), 2010(8): 1293-1296. LI Zhe, LU Languang, OUYANG Minggao. Comparison of methods for improving SOC estimation accuracy through an ampere-hour integeration approach[J]. Journal of Tsinghua University(Science and Technology), 2010(8): 1293-1296.
[10] 雷肖, 陈清泉, 刘开培,等. 电动车蓄电池荷电状态估计的神经网络方法 [J]. 电工技术学报, 2007, 22(8): 155-160. LEI Xiao, CHEN Qingquan, LIU Kaipei, et al. Battery state of charge estimation based on neural-network for electric vehicles[J]. Transactions of China Electrotechnical Society, 2007, 22(8): 150-160.
[11] 刘浩. 基于EKF的电动汽车用锂离子电池SOC估算方法研究[D]. 北京:北京交通大学, 2010. LIU Hao. Study on SOC estimation method of lithium-ion battery based on EKF for electric vehicles[D]. Beijing: Beijing Jiaotong University, 2010.
[12] 袁学庆, 张阳, 赵林,等. 基于EKF的锂电池SOC估算与试验研究[J]. 电源技术, 2015, 39(12): 2587-2589. YUAN Xueqing, ZHANG Yang, ZHAO Lin, et al. Li-ion battery SOC estimation and test research based on EKF[J].Chinese Journal of Power Source, 2015, 39(12): 2587-2589.
[13] 冯光. 基于EKF的锂离子电池SOC估算的建模与仿真[D]. 武汉:武汉理工大学, 2013. FENG Guang. Modeling and simulation based on EKF lithium-ion battery SOC estimation[D]. Wuhan: Wuhan University of Technology, 2013.
[14] 李建成, 戴瑜兴, 全惠敏,等. 基于改进Kalman滤波和安时积分的SOC复合估算[J]. 电源技术, 2014(12): 2267-2269. LI Jiancheng, DAI Yuxing, QUAN Huimin, et al. SOC estimating method based on improved Kalman filter and AH integrator[J]. Chinese Journal of Power Source, 2014(12): 2267-2269.
[15] 陈息坤, 孙冬, 陈小虎. 锂离子电池建模及其荷电状态鲁棒估计 [J]. 电工技术学报, 2015, 30(15):141-147. CHEN Xikun, SUN Dong, CHEN Xiaohu. Modeling and state of charge robust estimation for lithium-ion batteries[J].Transactions of China Electrotechnical Society, 2015, 30(15): 141-147.
[16] 高明煜, 何志伟, 徐杰. 基于采样点卡尔曼滤波的动力电池SOC估计[J]. 电工技术学报, 2011, 26(11): 161-167. GAO Mingyu, HE Zhiwei, XU Jie. Sigma point Kalman filter based SOC estimation for power supply battery [J].Transactions of China Electrotechnical Society, 2011, 26(11):161-167.
[17] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118. LIU Yi, TAN Guojun, HE Xiaoqun. Optimized battery model based adaptive Sigma Kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118.
[18] 刘金枝, 杨鹏, 李练兵. 一种基于能量建模的锂离子电池电量估算方法[J]. 电工技术学报, 2015, 30(13): 100-107. LIU Jinzhi, YANG Peng, LI Lianbing. A method to estimate the capacity of the lithium-ion battery based on energy model[J].Transactions of China Electrotechnical Society, 2015, 30(13):100-107.
[19] 刘新天, 何耀, 曾国建,等. 考虑温度影响的锂电池功率状态估计[J]. 电工技术学报, 2016, 31(13): 155-163. LIU Xintian, HE Yao, ZENG Guojian, et al. State-of-power estimation for li-ion battery considering the effect of temperature [J]. Transactions of China Electrotechnical Society, 2016, 31(13):155-163.
[20] LI J, BARILLAS J K, GUENTHER C, et al. A comparative study of state of charge estimation algorithms for LiFePO4, batteries used in electric vehicles[J]. Journal of Power Source, 2013, 230(10): 244-250.
[21] SEAMAN A, MCPHEE J. A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation [J]. Journal of Power Sources, 2014, 256(3): 410-423.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!