杨立才,赵莉娜,吴晓晴
YANG Li-cai,ZHAO Li-na,WU Xiao-qing
摘要: 在医学图像分割研究中,针对模糊C均值(FCM)聚类算法聚类个数难于确定、搜索过程容易陷入局部最优的缺陷,把蚁群算法与FCM聚类算法有机结合,提出了一种基于蚁群算法的模糊C均值聚类图像分割算法. 该算法首先利用蚁群算法全局性和鲁棒性的优点,得到聚类中心和聚类个数,再将其作为模糊C均值聚类的初始聚类中心和聚类个数,弥补了传统FCM聚类算法的不足,得到了较好的分割效果. 实例分析证明了算法的有效性和实用性.
中图分类号:
| [1] | 黄劲潮. 基于快速区域建议网络的图像多目标分割算法[J]. 山东大学学报(工学版), 2018, 48(4): 20-26. |
| [2] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
| [3] | 胡金戈,唐雁. 基于视觉中心转移的视觉显著性检测方法[J]. 山东大学学报(工学版), 2017, 47(3): 27-33. |
| [4] | 李璐,范文涛,杜吉祥. 基于Markov随机场的Student's t混合模型的脑MR图像分割[J]. 山东大学学报(工学版), 2017, 47(3): 49-55. |
| [5] | 樊淑炎, 丁世飞. 基于多尺度的改进Graph cut算法[J]. 山东大学学报(工学版), 2016, 46(1): 28-33. |
| [6] | 王启明, 李战国, 樊爱宛. 基于博弈论的量子蚁群算法[J]. 山东大学学报(工学版), 2015, 45(2): 33-36. |
| [7] | 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40. |
| [8] | 戚世乐,王美清. 自适应分割弱边缘的活动轮廓模型[J]. 山东大学学报(工学版), 2013, 43(6): 17-20. |
| [9] | 管燕,李存华*,仲兆满,孙兰兰. 化学分子结构图分割算法[J]. 山东大学学报(工学版), 2012, 42(5): 65-70. |
| [10] | 张新明, 毛文涛, 李振云. 二阶广义概率的二维Otsu阈值分割[J]. 山东大学学报(工学版), 2012, 42(1): 25-33. |
| [11] | 李永胜,曲良东,李熹. 自适应信息素更新蚁群算法求解QoS组播路由[J]. 山东大学学报(工学版), 2011, 41(4): 38-43. |
| [12] | 王丽娅, 潘振宽, 魏伟波*, 刘存良, 张志梅, 王钰. 多相图像分割的交替凸松弛优化及其Split Bregman算法[J]. 山东大学学报(工学版), 2011, 41(2): 40-45. |
| [13] | 王新沛1,刘常春1*,白曈2. 基于均值距离的图像分割方法[J]. 山东大学学报(工学版), 2010, 40(4): 36-41. |
| [14] | 孙海鹰 陈崚. 蚁群算法解决连续优化问题的新途径[J]. 山东大学学报(工学版), 2009, 39(6): 24-30. |
| [15] | 冯显英 张成梁 杨丙生 李蕾. 基于RGB颜色空间的异性纤维识别检测算法[J]. 山东大学学报(工学版), 2009, 39(5): 68-72. |
|
||