山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (6): 45-57.doi: 10.6040/j.issn.1672-3961.0.2024.111
• 机器学习与数据挖掘 • 上一篇
邱利芹1,2,王磊1,2*,于越1,2,孙雅慧1,2
QIU Liqin1,2, WANG Lei1,2*, YU Yue1,2, SUN Yahui1,2
摘要: 鉴于以区间值决策信息系统为对象的非增量式属性约简效率不高,现将知识粒度的概念推广到区间值决策信息系统中,从知识粒度的视角系统地研究区间值决策信息系统中的增量式属性约简方法。在区间值决策信息系统中引入相容度的概念并由此改进区间值相容度的度量方法;根据相容度确定相容关系并构造出相应的相容关系矩阵,以此得出一种基于矩阵的区间值决策信息系统中知识粒度的计算方法;探讨在对象集发生变化条件下知识粒度的更新机制,在此基础上用知识粒度来表示属性重要度,以属性重要度为启发式信息构建出增量式属性约简算法。在6个精选的UCI数据集上实施增量式属性约简算法的试验,试验结果表明:在不影响属性约简结果精度条件下,增量式属性约简方法较非增量式属性约简方法消耗时间更少,增量式属性约简方法更加高效。
中图分类号:
| [1] PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356. [2] 黄锦静, 陈岱, 李梦天. 基于粗糙集的决策树在医疗诊断中的应用[J]. 计算机技术与发展, 2017, 27(12): 148-152. HUANG Jinjing, CHEN Dai, LI Mengtian. Application of decision tree based on rough set in medical diagnosis[J]. Computer Technology and Development, 2017, 27(12): 148-152. [3] TIEW S T, CHEW Y E, LEE H Y, et al. A fragrance prediction model for molecules using rough set-based machine learning[J]. Chemie Ingenieur Technik, 2023, 95(3): 438-446. [4] 王江荣, 黄建华, 罗资琴, 等. 基于粗糙集的Logistic回归模型在矿井突水模式识别中的应用[J]. 煤田地质与勘探, 2015, 43(6): 70-74. WANG Jiangrong, HUANG Jianhua, LUO Ziqin, et al. Application of Logistic regression model based on rough set in recognition of mine water inrush pattern[J]. Coal Geology & Exploration, 2015, 43(6): 70-74. [5] QI Z H, LI H, LIU F, et al. Fusion decision strategies for multiple criterion preferences based on three-way decision[J].Information Fusion, 2024, 108: 102356. [6] DAI J H, WANG Z Y, HUANG W Y. Interval-valued fuzzy discernibility pair approach for attribute reduction in incomplete interval-valued information systems[J]. Information Sciences, 2023, 642: 119215. [7] CHEN Y Y, LI Z W, ZHANG G Q. Attribute reduction in an incomplete interval-valued decision information system[J]. IEEE Access, 2021, 9: 64539-64557. [8] LI W T, ZHOU H X, XU W H, et al. Interval dominance-based feature selection for interval-valued ordered data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(10): 6898-6912. [9] LIU X F, DAI J H, CHEN J L, et al. A fuzzy α-similarity relation-based attribute reduction approach in incomplete interval-valued information systems[J]. Applied Soft Computing, 2021, 109: 107593. [10] ZHANG X, MEI C L, CHEN D G, et al. Multi-confidence rule acquisition and confidence-preserved attribute reduction in interval-valued decision systems[J]. International Journal of Approximate Reasoning, 2014, 55(8): 1787-1804. [11] CHEN B W, ZHANG X Y, YANG J L. Feature selections based on three improved condition entropies and one new similarity degree in interval-valued decision systems[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107165. [12] 李磊涛, 张楠, 童向荣, 等. 基于差别矩阵的区间值决策系统β分布约简[J]. 计算机应用, 2021, 41(4): 1084-1092. LI Leitao, ZHANG Nan, TONG Xiangrong, et al. β-distribution reduction based on discernibility matrix in interval-valued decision systems[J]. Journal of Computer Applications, 2021, 41(4): 1084-1092. [13] 唐鹏飞,莫智文,谢鑫. 区间值决策表中基于相对知识粒度的属性约简[J]. 重庆理工大学学报(自然科学), 2021, 35(11): 286-292. TANG Pengfei, MO Zhiwen, XIE Xin. Attribute reduction based on relative knowledge granularity in interval-valued decision table[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35(11): 286-292. [14] ZHANG Y Y, LI T R, LUO C, et al. Incremental updating of rough approximations in interval-valued information systems under attribute generalization[J]. Information Sciences, 2016, 373: 461-475. [15] YANG L, QIN K Y, SANG B B, et al. Dynamic fuzzy neighborhood rough set approach for interval-valued information systems with fuzzy decision[J]. Applied Soft Computing, 2021, 111: 107679. [16] ZHANG X Y, LI J R. Incremental feature selection approach to interval-valued fuzzy decision information systems based on λ-fuzzy similarity self-information[J]. Information Sciences, 2023, 625: 593-619. [17] 张迎迎, 李天瑞. 区间值信息系统中一种极大相容类的增量更新算法[J]. 小型微型计算机系统, 2017, 38(7): 1573-1579. ZHANG Yingying, LI Tianrui. Incremental algorithm for updating maximal consistent classes in interval-valued information system[J]. Journal of Chinese Computer Systems, 2017, 38(7): 1573-1579. [18] DAI J H, WANG W T, XU Q, et al. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy[J]. Knowledge-Based Systems, 2012, 27: 443-450. [19] 王磊, 李天瑞. 一种基于矩阵的知识粒度计算方法[J]. 模式识别与人工智能, 2013, 26(5): 447-453. WANG Lei, LI Tianrui. A matrix-based approach for calculation of knowledge granulation[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(5): 447-453. [20] SANG B B, CHEN H M, YANG L, et al. Feature selection for dynamic interval-valued ordered data based on fuzzy dominance neighborhood rough set[J]. Knowledge-Based Systems, 2021, 227: 107223. [21] 焦玉清, 张勇. 基于区间值信息系统的信息熵增量式属性约简算法[J]. 绥化学院学报, 2021, 41(9): 141-147. JIAO Yuqing, ZHANG Yong. Incremental attribute reduction of information entropy in interval-valued information system[J]. Journal of Suihua University, 2021, 41(9): 141-147. [22] 鲍迪, 张楠, 童向荣, 等. 区间值决策表的正域增量式属性约简算法[J]. 计算机应用, 2019, 39(8): 2288-2296. BAO Di, ZHANG Nan, TONG Xiangrong, et al. Incremental attribute reduction algorithm of positive region in interval-valued decision tables[J]. Journal of Computer Applications, 2019, 39(8): 2288-2296. [23] JING Y G, LI T R, LUO C, et al. An incremental approach for attribute reduction based on knowledge granularity[J]. Knowledge-Based Systems, 2016, 104: 24-38. |
| [1] | 陈宝国,邓明,陈金林. 基于权重邻域熵的数值型信息系统属性约简算法[J]. 山东大学学报 (工学版), 2024, 54(1): 33-44. |
| [2] | 季雨瑄,叶军,杨震宇,敖家欣,王磊. 结合分辨矩阵改进的邻域粗糙集属性约简算法[J]. 山东大学学报 (工学版), 2022, 52(4): 99-109. |
| [3] | 景运革,李天瑞. 基于知识粒度的增量约简算法[J]. 山东大学学报(工学版), 2016, 46(1): 1-9. |
| [4] | 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14. |
| [5] | 张建成,苏连塔. 命题逻辑系统理论(广义)根性质及应用[J]. 山东大学学报(工学版), 2013, 43(4): 87-92. |
| [6] | 陈玉明,吴克寿,谢荣生. 基于相对知识粒度的决策表约简[J]. 山东大学学报(工学版), 2012, 42(6): 8-12. |
| [7] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
| [8] | 翟俊海,高原原,王熙照,陈俊芬. 基于划分子集的属性约简算法[J]. 山东大学学报(工学版), 2011, 41(4): 24-28. |
| [9] | 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 . |
| [10] | 刘纪芹,张萍,颜建军 . 变异知识与它的过滤特征[J]. 山东大学学报(工学版), 2006, 36(1): 93-99 . |
|
||