山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (1): 33-44.doi: 10.6040/j.issn.1672-3961.0.2022.310
• 机器学习与数据挖掘 • 上一篇
陈宝国1,邓明1 *,陈金林2
CHEN Baoguo1, DENG Ming1 *, CHEN Jinlin2
摘要: 在邻域粗糙集的属性约简中,每个属性被赋予相同的权重而不能更好地进行属性选择,针对这一问题,提出一种属性权重的邻域条件熵属性约简算法。通过条件属性与决策属性之间的相关系数评估条件属性的权重,基于权重方法提出一种改进的邻域关系,称为权重邻域关系,并提出相应的权重邻域粗糙集模型。以权重邻域粗糙集模型为基础,进一步提出权重邻域熵模型,理论证明权重邻域条件熵的单调性。通过权重邻域条件熵作为启发式函数提出一种新的数值型信息系统属性约简算法。试验结果表明,提出的属性约简算法具有更好的属性约简性能。
中图分类号:
[1] 周涛,陆惠玲,任海玲,等.基于粗糙集的属性约简算法综述[J]. 电子学报, 2021, 49(7):1439-1449. ZHOU Tao, LU Huiling, REN Hailing, et al. Survey on attribute reduction algorithm of rough set[J]. Acta Electronica Sinica, 2021, 49(7):1439-1449. [2] GAO Can, ZHOU Jie, MIAO Duoqian, et al. Granular-conditional-entropy-based attribute reduction for partially labeled data with proxy labels[J]. Information Sciences, 2021, 580:111-128. [3] ZHANG Qinli, CHEN Yiying, ZHANG Gangqiang, et al. New uncertainty measurement for categorical data based on fuzzy information structures: an application in attribute reduction[J]. Information Sciences, 2021, 580:541-577. [4] 李明,甘秀娜,王月波. 基于集成学习的决策粗糙集特定类属性约简算法[J]. 计算机应用与软件, 2021, 38(6):262-270. LI Ming, GAN Xiuna, WANG Yuebo. Class-specific attribute reduction algorithm for decision-theoretic rough sets based on ensemble learning[J]. Computer Applications and Software, 2021, 38(6):262-270. [5] 姚晟,李初宴,陈悦. 基于非平衡数据下不完备混合型信息系统的属性约简[J]. 计算机应用研究, 2021, 38(5):1331-1335. YAO Sheng, LI Chuyan, CHEN Yue. Attribute reduction of incomplete hybrid information system based on unbalanced data[J]. Application Research of Computers, 2021, 38(5):1331-1335. [6] HU Qinghua, YU Daren, LIU Jingfu, et al. Neighborhood rough set based heterogeneous feature subset selection[J]. Information Sciences, 2008, 178(18):3577-3594. [7] FAN Xiaodong, ZHAO Weida, WANG Changzhong, et al. Attribute reduction based on max-decision neighborhood rough set model[J]. Knowledge-Based Systems, 2018, 151(1):16-23. [8] SHU Wenhao, QIAN Wenbin, XIE Yonghong. Incremental feature selection for dynamic hybrid data using neighborhood rough set[J]. Knowledge-Based Systems, 2020, 194:105516. [9] WANG Changzhong, SHI Yunpeng, FAN Xiaodong, et al. Attribute reduction based on k-nearest neighborhood rough sets[J]. International Journal of Approximate Reasoning, 2019, 106:18-31. [10] CHEN Hongmei, LI Tianrui, FAN Xin, et al. Feature selection for imbalanced data based on neighborhood rough sets[J]. Information Sciences, 2019, 483:1-20. [11] HU M, TSANG E C C, GUO Y T, et al. A novel approach to attribute reduction based on weighted neighborhood rough sets[J]. Knowledge-Based Systems, 2021, 220:106908. [12] WANG Changzhong, HUANG Yang, SHAO Mingwen, et al. Feature selection based on neighborhood self-information[J]. IEEE Transactions on Cybernetics, 2020, 50(9):4031-4042. [13] 孙林,赵婧,徐久成,等. 基于邻域粗糙集和帝王蝶优化的特征选择算法[J]. 计算机应用, 2022, 42(5):1355-1366. SUN Lin, ZHAO Jing, XU Jiucheng, et al. Feature selection algorithm based on neighborhood rough set and monarch butterfly optimization[J]. Journal of Computer Applications, 2022, 42(5): 1355-1366. [14] 熊菊霞,吴尽昭,王秋红.邻域互信息熵的混合型数据决策代价属性约简[J]. 小型微型计算机系统, 2021, 42(8):1584-1590. XIONG Juxia, WU Jinzhao, WANG Qiuhong. Decision cost attribute reduction of hybrid data based on neighborhood mutual information entropy[J]. Journal of Chinese Computer Systems, 2021, 42(8):1584-1590. [15] 陈曦,刘晶. 基于邻域关系的知识粒度增量式属性约简算法[J]. 微电子学与计算机, 2020, 37(10):1-6. CHEN Xi, LIU Jing. Knowledge granularity incremental attribute reduction algorithm based on neighborhood relation[J]. Microelectronics & Computer, 2020, 37(10):1-6. [16] YANG Xiaoling, CHEN Hongmei, LI Tianrui, et al. Neighborhood rough sets with distance metric learning for feature selection[J]. Knowledge-Based Systems, 2021, 224:107076. [17] WAN Jihong, CHEN Hongmei, YUAN Zhong, et al. A novel hybrid feature selection method considering feature interaction in neighborhood rough set[J]. Knowledge-Based Systems, 2021, 227:107167. [18] SUN Lin, WANG Tianxiang, DING Weiping, et al. Feature selection using fisher score and multilabel neighborhood rough sets for multilabel classification[J]. Information Sciences, 2021, 578:887-912. [19] 张雨新,孙达明,李飞. 基于粒化单调的不完备混合型数据增量式属性约简算法[J]. 计算机应用与软件, 2021, 38(3):279-286. ZHANG Yuxin, SUN Daming, LI Fei. Incremental attribute reduction algorithm for incomplete mixed data based on granulation monotony[J]. Computer Applications and Software, 2021, 38(3):279-286. [20] 蔡艳婧,程实,王强. 不完备混合决策粗糙集特定类多目标属性约简[J]. 计算机工程与设计, 2020, 41(11):3063-3071. CAI Yanjing, CHENG Shi, WANG Qiang. Class-specific multi-objective attribute reduction for incomplete mixed decision-theoretic rough set[J]. Computer Engineering and Design, 2020, 41(11):3063-3071. [21] 李小南,赵璐,易黄建. 基于加权信息熵的直觉模糊信息系统的三支决策[J]. 控制与决策, 2022, 37(10):2705-2713. LI Xiaonan, ZHAO Lu, YI Huangjian. Three-way decision of intuitionistic fuzzy information systems based on the weighted information entropy[J]. Control and Decision, 2022, 37(10):2705-2713. [22] 徐怡,李宝峰,李策. 基于权重分布的多粒度粗糙集模型[J]. 模糊系统与数学, 2020, 34(6):55-67. XU Yi, LI Baofeng, LI Ce. Multi-granulation rough set model based on weight distribution[J]. Fuzzy Systems and Mathematics, 2020, 34(6):55-67. [23] VLUYMANS S, PARTHALAIN N M, CORNELIS C, et al. Weight selection strategies for ordered weighted average based fuzzy rough sets[J]. Information Sciences, 2019, 501:155-171. [24] HU Qinghua, ZHANG Lei, ZHANG David, et al. Measuring relevance between discrete and continuous features based on neighborhood mutual information[J]. Expert Systems with Applications, 2011, 38:10737-10750. [25] DEMIAR J, SCHUURMANS D. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1):1-30. |
[1] | 季雨瑄,叶军,杨震宇,敖家欣,王磊. 结合分辨矩阵改进的邻域粗糙集属性约简算法[J]. 山东大学学报 (工学版), 2022, 52(4): 99-109. |
[2] | 景运革,李天瑞. 基于知识粒度的增量约简算法[J]. 山东大学学报(工学版), 2016, 46(1): 1-9. |
[3] | 辛丽玲, 何威, 于剑, 贾彩燕. 一种基于密度差异的离群点检测算法[J]. 山东大学学报(工学版), 2015, 45(3): 7-14. |
[4] | 施珺,朱敏. 一种基于灰色系统和支持向量机的预测优化模型[J]. 山东大学学报(工学版), 2012, 42(5): 7-11. |
[5] | 翟俊海,高原原,王熙照,陈俊芬. 基于划分子集的属性约简算法[J]. 山东大学学报(工学版), 2011, 41(4): 24-28. |
[6] | 管延勇,胡海清,王洪凯 . α-粗糙集模型中的不可分辨关系[J]. 山东大学学报(工学版), 2006, 36(1): 75-80 . |
|