山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 114-124.doi: 10.6040/j.issn.1672-3961.0.2024.040
• 土木工程 • 上一篇
童里1,3,李达2*,李树忱1,彭科峰1,3,陈祎1,3
TONG Li1,3, LI Da2*, LI Shuchen1, PENG Kefeng1,3, CHEN Yi1,3
摘要: 针对泥水盾构的弯曲管路进行三维建模,利用CFD-DEM耦合进行数值模拟,揭示泥浆携带卵石的运移规律,分析卵石沉积滞排的原因,探究卵石沉积对管道内流场的影响,为现场施工解决滞排问题提供优化指导。结果表明:滞排问题是由于低流速的泥浆提供的拖曳力太低,大量颗粒在管道弯曲处发生了沉积。管道内颗粒进入速度和排出速度将会达到动态平衡,管道弯曲度数越大,颗粒生成速度和排出速度达到动态平衡的临界点越晚,说明颗粒滞排越严重,滞排颗粒数量就越多。颗粒沉积导致有效过流面积变小,泥浆流速发生了明显分层,流场的分层更加不利于底部沉积颗粒的运移,加剧滞排问题。泥浆黏度越大,颗粒和泥浆发生剪切流动时的拖曳力越大,颗粒的平均运移速度越大。泥浆密度对颗粒的水平运移影响不大,但颗粒向上运输时,密度大的泥浆能够提供更高的浮力,有利于防治颗粒的滞排。
中图分类号:
[1] 竺维彬, 钟长平, 黄威然, 等. 盾构施工“滞排”成因分析和对策研究[J]. 现代隧道技术, 2014,51(5):23-32. ZHU Weibin, ZHONG Changping, HUANG Weiran, et al. Cause analysis and countermeasures for“hindered” mucking in shield construction[J]. Modern Tunnelling Technology, 2014, 51(5):23-32. [2] 陈慧超.大直径常压刀盘泥水平衡盾构掘进防滞排技术[J]. 施工技术(中英文), 2023, 52(3):132-139. CHEN Huichao. Anti-stagnation and drainage technology of mud-water balance shield tunneling with large diameter atmospheric pressure cutter head[J]. Construction Technology, 2023, 52(3):132-139. [3] 贾连辉, 肖艳秋, 赵驰, 等.基于CFD-DEM方法的泥水盾构环流系统泥浆携渣特性研究[J].机械设计, 2023,40(12):126-132. JIA Lianhui, XIAO Yanqiu, ZHAO Chi, et al. Study on mud-water shield circulation system's slurry slag-carrying characteristics based on CFD-DEM method[J]. Journal of Machine Design, 2023, 40(12):126-132. [4] 陈健, 薛峰, 赵合全, 等. 大直径泥水盾构环流系统管路压力损失及携渣特性[J]. 隧道与地下工程灾害防治, 2020, 2(2):83-91. CHEN Jian, XUE Feng, ZHAO Hequan, et al. Pressure loss and slag carrying characteristics of large diameter mud shield circulation system[J].Tunnel and Underground Engineering Disaster Control, 2019, 2(2):83-91. [5] XIONG H, WU H, BAO X H, et al. Investigating effect of particle shape on suffusion by CFD-DEM modeling[J]. Construction and Building Materials, 2021, 289:123043. [6] GUO Y D, LI X G, JIN D L, et al. Assessment on the reverse circulation performance of slurry shield pipeline system assisted with CFD-DEM modeling under sandy cobble stratum[J]. Powder Technology, 2023, 425:118573. [7] WANG J A, LI Y, ZHAO J F, et al. Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation[J]. Petroleum, 2023, 9(3):403-411. [8] GUO Y D, LI X G, SUN Y, et al. Investigation into the flow characteristics of slurry shield pipeline system under sandy pebble stratum:model test and CFD-DEM simulation[J]. Powder Technology, 2023, 415:118149. [9] LIU M B, LIAO S M, SHI Z H, et al. Analytical study and field investigation on the effects of clogging in slurry shield tunneling[J].Tunnelling and Underground Space Technology, 2023, 133:104957. [10] YANG D, XIA Y M, WU D, et al. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 71:223-230. [11] 任振, 贾连辉, 王少萍, 等. 卵石地层泥水盾构环流管道排渣特性研究[J]. 隧道建设(中英文), 2023,43(增刊1):171-177. REN Zhen, JIA Lianhui, WANG Shaoping, et al. Study on slag discharge characteristics of slurry shield circulating pipeline in pebble stratum[J].Tunnel Construction, 2023, 43(Suppl.1):171-177. [12] CUI J, FANG Y, XU G Y, et al. Transportation performance of large-sized pebbles in slurry circulation system: a laboratory study[J]. Arabian Journal for Science and Engineering, 2021, 46(11):10519-10539. [13] BINGHAM E C. An investigation of the laws of plastic flow[J]. Bulletin of the Bureau of Standards, 1916, 13(2):309. [14] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1990:269-289. [15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65. [16] ERGUN S. Fluid flow through packed columns[J]. Engineering Chemistry Materials Science, 1952, 48:89-94. [17] 谢永辉. 砂卵石力学参数确定方法研究[D]. 成都:西南石油大学, 2017, 29(1):23-65. XIE Yonghui. Study on determination method of mechanical parameters of sandy pebble[D].Chengdu: Southwest Petroleum University, 2017, 29(1):23-65. [18] ALOBAID F, BARAKI N, EPPLE B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16:41-53. [19] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1):79-87. |
[1] | 孙腾云,丁万涛,王承震,于文端,王志成,郭文静. 泥水盾构隧道用新型环保泥浆及流变性质[J]. 山东大学学报 (工学版), 2024, 54(6): 82-88. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 2
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 20
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|