您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (2): 114-124.doi: 10.6040/j.issn.1672-3961.0.2024.040

• 土木工程 • 上一篇    

基于CFD-DEM耦合的泥水平衡盾构排浆管卵石滞排研究

童里1,3,李达2*,李树忱1,彭科峰1,3,陈祎1,3   

  1. 1.山东大学齐鲁交通学院, 山东 济南 250002;2.中铁第四勘察设计院集团有限公司, 湖北 武汉 430063;3.山东大学岩土与地下工程研究院, 山东 济南 250061
  • 发布日期:2025-04-15
  • 作者简介:童里(1999— ),男,湖北恩施人,硕士研究生,主要研究方向为岩土工程. E-mail: tongli19990909@163.com. *通信作者简介:李达(1990— ),男,陕西宝鸡人,工程师,硕士,主要研究方向为隧道工程设计. E-mail: lida_csu@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51879150,41831278);济南市“高校20条”资助项目(2020GXRC046)

Research on pebble slagging stagnation of slurry balance shield drain pipe based on CFD-DEM coupling

TONG Li1,3, LI Da2*, LI Shuchen1, PENG Kefeng1,3, CHEN Yi1,3   

  1. 1. School of Qilu Transportation, Shandong University, Jinan 250002, Shandong, China;
    2. China Railway Fourth Survey and Design Institute Group Co., Ltd., Wuhan 430063, Hubei, China;
    3. Institute of Geotechnical and Underground Engineering, Shandong University, Jinan 250061, Shandong, China
  • Published:2025-04-15

摘要: 针对泥水盾构的弯曲管路进行三维建模,利用CFD-DEM耦合进行数值模拟,揭示泥浆携带卵石的运移规律,分析卵石沉积滞排的原因,探究卵石沉积对管道内流场的影响,为现场施工解决滞排问题提供优化指导。结果表明:滞排问题是由于低流速的泥浆提供的拖曳力太低,大量颗粒在管道弯曲处发生了沉积。管道内颗粒进入速度和排出速度将会达到动态平衡,管道弯曲度数越大,颗粒生成速度和排出速度达到动态平衡的临界点越晚,说明颗粒滞排越严重,滞排颗粒数量就越多。颗粒沉积导致有效过流面积变小,泥浆流速发生了明显分层,流场的分层更加不利于底部沉积颗粒的运移,加剧滞排问题。泥浆黏度越大,颗粒和泥浆发生剪切流动时的拖曳力越大,颗粒的平均运移速度越大。泥浆密度对颗粒的水平运移影响不大,但颗粒向上运输时,密度大的泥浆能够提供更高的浮力,有利于防治颗粒的滞排。

关键词: 泥水盾构, 滞排, CFD-DEM, 卵石运移

中图分类号: 

  • TU94
[1] 竺维彬, 钟长平, 黄威然, 等. 盾构施工“滞排”成因分析和对策研究[J]. 现代隧道技术, 2014,51(5):23-32. ZHU Weibin, ZHONG Changping, HUANG Weiran, et al. Cause analysis and countermeasures for“hindered” mucking in shield construction[J]. Modern Tunnelling Technology, 2014, 51(5):23-32.
[2] 陈慧超.大直径常压刀盘泥水平衡盾构掘进防滞排技术[J]. 施工技术(中英文), 2023, 52(3):132-139. CHEN Huichao. Anti-stagnation and drainage technology of mud-water balance shield tunneling with large diameter atmospheric pressure cutter head[J]. Construction Technology, 2023, 52(3):132-139.
[3] 贾连辉, 肖艳秋, 赵驰, 等.基于CFD-DEM方法的泥水盾构环流系统泥浆携渣特性研究[J].机械设计, 2023,40(12):126-132. JIA Lianhui, XIAO Yanqiu, ZHAO Chi, et al. Study on mud-water shield circulation system's slurry slag-carrying characteristics based on CFD-DEM method[J]. Journal of Machine Design, 2023, 40(12):126-132.
[4] 陈健, 薛峰, 赵合全, 等. 大直径泥水盾构环流系统管路压力损失及携渣特性[J]. 隧道与地下工程灾害防治, 2020, 2(2):83-91. CHEN Jian, XUE Feng, ZHAO Hequan, et al. Pressure loss and slag carrying characteristics of large diameter mud shield circulation system[J].Tunnel and Underground Engineering Disaster Control, 2019, 2(2):83-91.
[5] XIONG H, WU H, BAO X H, et al. Investigating effect of particle shape on suffusion by CFD-DEM modeling[J]. Construction and Building Materials, 2021, 289:123043.
[6] GUO Y D, LI X G, JIN D L, et al. Assessment on the reverse circulation performance of slurry shield pipeline system assisted with CFD-DEM modeling under sandy cobble stratum[J]. Powder Technology, 2023, 425:118573.
[7] WANG J A, LI Y, ZHAO J F, et al. Simulation of the effect of hydrate adhesion properties on flow safety in solid fluidization exploitation[J]. Petroleum, 2023, 9(3):403-411.
[8] GUO Y D, LI X G, SUN Y, et al. Investigation into the flow characteristics of slurry shield pipeline system under sandy pebble stratum:model test and CFD-DEM simulation[J]. Powder Technology, 2023, 415:118149.
[9] LIU M B, LIAO S M, SHI Z H, et al. Analytical study and field investigation on the effects of clogging in slurry shield tunneling[J].Tunnelling and Underground Space Technology, 2023, 133:104957.
[10] YANG D, XIA Y M, WU D, et al. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum[J].Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2018, 71:223-230.
[11] 任振, 贾连辉, 王少萍, 等. 卵石地层泥水盾构环流管道排渣特性研究[J]. 隧道建设(中英文), 2023,43(增刊1):171-177. REN Zhen, JIA Lianhui, WANG Shaoping, et al. Study on slag discharge characteristics of slurry shield circulating pipeline in pebble stratum[J].Tunnel Construction, 2023, 43(Suppl.1):171-177.
[12] CUI J, FANG Y, XU G Y, et al. Transportation performance of large-sized pebbles in slurry circulation system: a laboratory study[J]. Arabian Journal for Science and Engineering, 2021, 46(11):10519-10539.
[13] BINGHAM E C. An investigation of the laws of plastic flow[J]. Bulletin of the Bureau of Standards, 1916, 13(2):309.
[14] LAUNDER B E, SPALDING D B. The numerical computation of turbulent flows[J]. Computer Methods in Applied Mechanics and Engineering, 1990:269-289.
[15] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1):47-65.
[16] ERGUN S. Fluid flow through packed columns[J]. Engineering Chemistry Materials Science, 1952, 48:89-94.
[17] 谢永辉. 砂卵石力学参数确定方法研究[D]. 成都:西南石油大学, 2017, 29(1):23-65. XIE Yonghui. Study on determination method of mechanical parameters of sandy pebble[D].Chengdu: Southwest Petroleum University, 2017, 29(1):23-65.
[18] ALOBAID F, BARAKI N, EPPLE B. Investigation into improving the efficiency and accuracy of CFD/DEM simulations[J]. Particuology, 2014, 16:41-53.
[19] TSUJI Y, KAWAGUCHI T, TANAKA T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology, 1993, 77(1):79-87.
[1] 孙腾云,丁万涛,王承震,于文端,王志成,郭文静. 泥水盾构隧道用新型环保泥浆及流变性质[J]. 山东大学学报 (工学版), 2024, 54(6): 82-88.
Viewed
Full text
2
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 2

  From local
  Times 2
  Rate 100%

Abstract
20
Just accepted Online first Issue
0 0 20
  From Others local
  Times 18 2
  Rate 90% 10%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!