山东大学学报 (工学版) ›› 2025, Vol. 55 ›› Issue (1): 86-96.doi: 10.6040/j.issn.1672-3961.0.2023.320
• 土木工程 • 上一篇
孙尚渠,张恭禄,蒋志斌*,李朝阳
SUN Shangqu, ZHANG Gonglu, JIANG Zhibin*, LI Zhaoyang
摘要: 以汕头湾海底隧道盾构段的监测数据为基础,基于数理统计法和机器学习法探究不同影响因素对滚刀磨损的敏感性程度。确定4个对滚刀磨损有明显影响的因素,分别为掘进距离、转速、转程和旋转角;建立以上述4个影响因素作为神经网络输入节点的反向传播神经网络(backpropagation neural network, BPNN)的滚刀磨损预测模型,采用遗传算法(genetic algorithm, GA)对预测模型进行优化并开展预测研究。结果表明:相较于BP模型,GA-BP模型的决定系数R2从0.706 4提高到0.823 9,预测精度明显提升,说明GA能够明显提高BPNN模型的预测能力。
中图分类号:
[1] 洪开荣. 我国隧道及地下工程发展现状与展望[J]. 隧道建设, 2015, 35(2): 95-107. HONG Kairong. State-of-art and prospect of tunnels and underground works in China[J]. Tunnel Construction, 2015, 35(2): 95-107. [2] SU W L, LI X G, JIN D L, et al. Analysis and prediction of TBM disc cutter wear when tunnelling in hard rock strata: a case study of a metro tunnel excavation in Shenzhen, China[J]. Wear, 2020: 446-447. [3] REN D J, SHEN S L, ARULRAJAH A, et al. Prediction model of TBM disc wear during tunnelling in heterogeneous ground[J]. Rock Mechanics and Rock Engineering, 2018, 51: 3599-3611. [4] 龚秋明, 谢兴飞, 黄流, 等. 引绰济辽工程二标隧洞段TBM滚刀磨损规律[J]. 隧道与地下工程灾害防治, 2022, 4(4): 1-10. GONG Qiuming, XIE Xingfei, HUANG Liu, et al. Wear law of TBM cutter in the tunnel section of the second bid of the Chaoer River to Xiliao River water conveyance project[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(4): 1-10. [5] LIU Q S, LIU J P, PAN Y C, et al. A wear rule and cutter life prediction model of a 20-inTBM cutter for granite: a case study of a water conveyance tunnel in China[J]. Rock Mechanics and Rock Engineering, 2017, 50: 1303-1320. [6] HASSANPOUR J. Development of an empirical model to estimate disc cutter wear for sedimentary and low to medium grade metamorphic rocks[J]. Tunnelling and Underground Space Technology, 2018, 78: 90-99. [7] 刘振丙, 方旭升, 杨辉华, 等. 基于多尺度残差神经网络的阿尔茨海默诊断分类[J]. 山东大学学报(工学版), 2018, 48(6): 1-7. LIU Zhenbing, FANG Xusheng, YANG Huihua, et al. The diagnosis of Alzheimer's disease classification based on multi-scale residual neutral network[J]. Journal of Shandong University(Engineering Science), 2018, 48(6): 1-7. [8] 周荣翔, 贾修一. 中文反语识别特征分析[J]. 山东大学学报(工学版), 2019, 49(1): 41-46. ZHOU Rongxiang, JIA Xiuyi. Features analysis for Chinese irony detection[J]. Journal of Shandong University(Engineering Science), 2019, 49(1): 41-46. [9] 潘秋景, 李晓宙, 黄杉, 等. 机器学习在盾构隧道智能施工中的应用——综述与展望[J]. 隧道与地下工程灾害防治, 2022, 4(3): 10-30. PAN Qiujing, LI Xiaozhou, HUANG Shan, et al. Application of machine learning to intelligent shield tunnelling: review and prospects[J]. Hazard Control in Tunnelling and Underground Engineering, 2022, 4(3): 10-30. [10] 丁小彬, 谢宇轩, 薛皓文, 等. 基于神经网络的盾构滚刀磨损量预测方法探讨[J]. 地下空间与工程学报, 2023, 19(2): 560-568. DING Xiaobin, XIE Yuxuan, XUE Haowen, et al. Investigation of quantitative predication of TBM disc cutter wear by ANN[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(2): 560-568. [11] 丁小彬, 谢宇轩, 薛皓文, 等. 基于神经网络算法的滚刀磨损量预测方法[J]. 郑州大学学报(工学版), 2023, 44(1): 83-88. DING Xiaobin, XIE Yuxuan, XUE Haowen, et al. A method for disc cutter wear prediction based on neural network algorithm[J]. Journal of Zhengzhou University(Engineering Science), 2023, 44(1): 83-88. [12] 韩冰宇, 袁大军, 金大龙, 等. 复合地层盾构刀具磨损分析与预测[J]. 土木工程学报, 2020, 53(增刊1): 137-142. HAN Bingyu, YUAN Dajun, JIN Dalong, et al. Analysis and predication od shield cutters wear in mixed ground[J]. China Civil Engineering Journal, 2020, 53(Suppl.1): 137-142. [13] 石超, 薛皓文, 丁小彬. 基于BP神经网络的硬岩地层盾构滚刀磨损预测[J]. 现代隧道技术, 2020, 57(增刊1): 217-225. SHI Chao, XUE Haowen, DING Xiaobin. Prediction of cutter wear of shield machine in hard rock stratum based on BP neural network[J]. Modern Tunnelling Technology, 2020, 57(Suppl.1): 217-225. [14] 杨俊哲, 邱承有. 盾构刀具磨损速率预测研究[J]. 施工技术, 2016, 45(22): 25-30. YANG Junzhe, QIU Chengyou. Prediction of cutting tool wear rate[J]. Construction Technology, 2016, 45(22): 25-30. [15] 赵寄辰. 基于大数据的盾构机刀具剩余使用寿命预测方法研究[D]. 西安:西安电子科技大学, 2020: 21-23. ZHAO Jichen. Research on prediction method of remaining useful life of shield machine tools based on big data[D]. Xi'an: Xidian University, 2020: 21-23. [16] QIN C J, SHI G, TAO J F, et al. Precise cutterhead torque prediction for shield tunnelling machines using a novel hybrid deep neural network[J]. Mechanical Systems and Signal Processing, 2021, 151: 107386. [17] ZHOU X Z, ZHAO C, BIAN X C. Prediction of maximum ground surface settlement induced by shield tunneling using XGBoost algorithm with golden-sine seagull optimization[J]. Computers and Geotechnics, 2023, 154: 105156. [18] 吴俊, 袁大军, 李兴高, 等. 盾构刀具磨损机理及预测分析[J]. 中国公路学报, 2017, 30(8): 109-142. WU Jun, YUAN Dajun, LI Xinggao, et al. Analysis on wear mechanism and prediction of shield cutter[J]. China J. Highw. Transp, 2017, 30(8): 109-142. [19] 武松, 潘发明. SPSS统计分析大全[M]. 北京:清华大学出版社, 2014: 218. [20] 陈勇, 邹皓天, 苏剑, 等. 基于数据挖掘的土水特征曲线影响分析及预测研究[J]. 应用基础与工程科学学报, 2023, 31(2): 451-461. CHEN Yong, ZOU Haotian, SU Jian, et al. Impact analysis and prediction research of soil-water characteristic curves based on data mining[J]. Journal of Basic Science and Engineering, 2023, 31(2): 451-461. [21] 周志华. 机器学习[M]. 北京:清华大学出版社, 2016: 18-19. [22] 陈玉坤, 管会生, 周磊, 等. 基于BP神经网络的盘型滚刀磨损预测研究[J]. 现代隧道技术, 2021, 58(5): 78-84. CHEN Yukun, GUAN Huisheng, ZHOU Lei, et al. Research on the wear prediction of disc cutters based on BP neural network[J]. Modern Tunneling Technology, 2021, 58(5): 78-84. [23] 乔金丽, 孟秋杰, 刘建琴, 等. 基于遗传规划的复杂地层中盾构滚刀磨损寿命预测[J]. 工矿自动化, 2018, 44(9): 51-58. QIAO Jinli, MENG Qiujie, LIU Jianqin, et al. Prediction of wear life of shield disc cutter in complex formations based on genetic programming[J]. Industry and Mine Automation, 2018, 44(9): 51-58. [24] ELBAZ Khakid, SHEN Shuilong, ZHOU Annan, et al. Prediction of disc cutter life during shield tunneling with AI via the incorporation of a genetic algorithm into a GMDH-Type neural network[J]. Engineering, 2020, 7(2): 238-251. [25] 李笑, 苏小江. 基于Elman神经网络的盾构滚刀磨损预测方法研究[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(6): 1121-1124. LI Xiao, SU Xiaojiang. A new method for forecasting shield's disc-cutters wearing based on Elman neural network[J]. Journal of Liaoning Technical University(Natural Science), 2010, 29(6): 1121-1124. [26] ZHOU C, DING L Y, ZHOU Y, et al. Hybrid support vector machine optimization model for prediction of energy consumption of cutter head drives in shield tunneling[J]. Journal of Computing in Civil Engineering, 2019, 33(3): 04019019.1-04019019.17. [27] 王思琪. 基于支持向量机的盾构刀具磨损预测研究[D]. 南京: 南京理工大学, 2020: 59-81. WANG Siqi. Research on wear prediction of shield disc cutter based on support vector machine[D]. Nanjing: Nanjing University of Science & Technology, 2020: 59-81. [28] 周志锋. 基于支持向量机的盾构滚刀磨损预测研究[D]. 广州: 广州大学, 2018: 35-47. ZHOU Zhifeng. Research on wear prediction of shield hob based on support vector machine[D]. Guangzhou: Guangzhou University, 2018: 35-47. [29] 李笑, 苏小江. 盾构滚刀磨损的多元非线性回归预测[J]. 辽宁工程技术大学学报(自然科学版), 2010, 29(6): 281-283. LI Xiao, SU Xiaojiang. Forecast of wear shield's disc cutters based on multivariate nonlinear regression[J]. Journal of Liaoning Technical University(Natural Science), 2010, 29(6): 281-283. [30] 陈明. MATLAB神经网络原理与案例精讲[M]. 北京: 清华大学出版社, 2013. |
[1] | 陈吟枫,肖晋宇,侯金鸣,江涵,赵小令,施啸寒. 基于精细化运行模拟的源-网-储协同短期扩展规划[J]. 山东大学学报 (工学版), 2024, 54(6): 156-166. |
[2] | 李二超, 张智钊. 在线动态订单需求车辆路径规划[J]. 山东大学学报 (工学版), 2024, 54(5): 62-73. |
[3] | 张亮,牛凯,罗贤超,张思遥,裴浩威,唐亚可,田利. 风冰荷载作用下输电塔-线体系参数敏感性分析[J]. 山东大学学报 (工学版), 2024, 54(3): 132-140. |
[4] | 赵姣,杨倩倩,胡大伟,胡卉,李洋. 基于排队模型的电动物流车充电站选址和运输路径问题[J]. 山东大学学报 (工学版), 2024, 54(2): 47-59. |
[5] | 孙东磊,杨思,韩学山,叶平峰,王宪,刘蕊. 高比例风电接入下计及时段间耦合旋转备用响应风险的动态经济调度方法[J]. 山东大学学报 (工学版), 2022, 52(5): 111-122. |
[6] | 孙东磊, 鉴庆之, 李智琦, 韩学山, 王明强, 陈博, 付一木. 源网协调的电力系统均匀性规划[J]. 山东大学学报 (工学版), 2022, 52(5): 92-101. |
[7] | 宋修广,张营超,庄培芝,杨鹤,张海凤,王娟. 基于遗传算法的道路安定极限优化求解方法[J]. 山东大学学报 (工学版), 2021, 51(5): 1-7. |
[8] | 郭蓉蓉,张汝华,马信辉,郭森垚. 近交叉口路中式快速公交站点选址优化[J]. 山东大学学报 (工学版), 2021, 51(3): 61-67. |
[9] | 孙润稼,朱海南,刘玉田. 基于偏好多目标优化和遗传算法的输电网架重构[J]. 山东大学学报 (工学版), 2019, 49(5): 17-23. |
[10] | 顾雪平, 杨超, 梁海平, 王元博, 李少岩. 异步电网并行协调恢复策略的优化制定方法[J]. 山东大学学报 (工学版), 2019, 49(5): 9-16. |
[11] | 高阳,孙浩凯,刘日成. 基坑的双排桩支护设计及变形规律[J]. 山东大学学报 (工学版), 2019, 49(3): 86-94. |
[12] | 公冶小燕,林培光,任威隆. 基于Grefenstette编码和2-opt优化的遗传算法[J]. 山东大学学报 (工学版), 2018, 48(6): 19-26. |
[13] | 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87. |
[14] | 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94. |
[15] | 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 77
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|