山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (4): 35-41.doi: 10.6040/j.issn.1672-3961.0.2023.160
刘国军,范天祥,王乃正,张正达,齐广智
LIU Guojun, FAN Tianxiang, WANG Naizheng, ZHANG Zhengda, QI Guangzhi
摘要: 为更好地表示节点,提出一种新的图嵌入方法,将节点表示为由均值和方差构成的高斯分布,通过应用一系列可逆 Householder变换,将相对简单的分布转换为更灵活的分布,可以更好地捕获关于其表示的不确定性。为提高稳定性,采用Wasserstein距离进行分布之间的度量。试验结果表明,在多个基准数据集上,使用Householder变换的Graph2Gauss(G2G)算法比原始模型的链接预测表现更好。通过节点分类的效果可以看出,对于节点信息缺失的图,使用Wasserstein距离可以大幅增加节点分类的F1分数。
中图分类号:
[1] HE X, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recom-mendation[C] //Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 639-648. [2] WAIKHOM L, PATGIRI R. Graph neural networks:methods, applications, and opportunities[EB/OL].(2021-08-24)[2023-07-01]. https://arxiv.org/abs/2108.10733. [3] NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C] //Proceedings of the 33rd International Conference on Machine Learning. New York, USA: PMLR, 2016: 2014-2023. [4] YANG L, CHEUNG N M, LI J, et al. Deep clustering by gaussian mixture variational autoencoders with graph embedding[C] //Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 6440-6449. [5] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C] //Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, USA: Curran Associates Inc., 2017: 1024-1034. [6] QU M, BENGIO Y, TANG J. GMNN:graph Markov neural networks[C] //Proceedings of the 36th International Conference on Machine Learning. Long Beach, USA: PMLR, 2019: 5241-5250. [7] WANG X, BO D, SHI C, et al. A survey on hetero-geneous graph embedding: methods, techniques, applications and sources[J]. IEEE Transactions on Big Data, 2023, 9(2): 415-436. [8] GOYAL P, FERRARA E. Graph embedding techniques, applications, and performance:a survey[J]. Knowledge-Based Systems, 2018, 151: 78-94. [9] VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[EB/OL].(2018-02-04)[2023-07-01]. https://arxiv.org/abs/1710.10903. [10] YING C, CAI T, LUO S,et al. Do transformers really perform badly for graph representation?[EB/OL].(2021-11-24)[2023-07-01]. https://arxiv.org/abs/2106.05234v1. [11] WANG Z, YU D, LI Q, et al. SR-HGN: semantic-and relation-aware heterogeneous graph neural network[J]. Expert Systems with Applications, 2023, 224: 119982. [12] BOJCHEVSKI A, GÜNNEMANN S. Deep gaussian embedding of graphs:unsupervised inductive learning via ranking[EB/OL].(2018-02-27)[2023-07-01]. https://arxiv.org/abs/1707.03815v2. [13] REZENDE D, MOHAMED S. Variational inference with normalizing flows[C] //Proceedings of the 32nd International Conference on Machine Learning. Lille, France: PMLR, 2015: 1530-1538. [14] KOBYZEV I, PRINCE S J D, BRUBAKER M A. Normalizing flows:an introduction and review of current methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 43(11): 3964-3979. [15] HOUSEHOLDER A S. Unitary triangularization of a nonsymmetric matrix[J]. Journal of the ACM, 1958, 5(4): 339-342. [16] LIU G, LIU Y, GUO M, et al. Variational inference with Gaussian mixture model and householder flow[J]. Neural Networks, 2019, 109: 43-55. [17] 王梅. 几类特殊对称矩阵的分解[D]. 天津:天津工业大学, 2019. WANG Mei. Decomposition of some special symmetric matrices[D]. Tianjin: Tianjin University of Techn-ology, 2019. [18] SUN X, BISCHOF C. A basis-kernel representation of orthogonal matrices[J]. SIAM Journal on Matrix Analysis and Applications, 1995, 16(4): 1184-1196. [19] ZHU D, CUI P, WANG D, et al. Deep variational network embedding in Wasserstein space[C] //Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, UK: ACM, 2018: 2827-2836. [20] 刘泽华. Wasserstein空间上的积分及其在分布式鲁棒优化中的应用[D]. 南京:南京大学, 2020. LIU Zehua. Calculus on Wasserstein space and its application in distributed robust optimization[D]. Nanjing: Nanjing University, 2020. [21] ÇELIK T Ö, JAMNESHAN A, MONTÚFAR G, et al. Wasserstein distance to independence models[J]. Journal of Symbolic Computation, 2021, 104: 855-873. [22] MCCALLUM A K, NIGAM K, RENNIE J,et al. Automating the construction of internet portals with machine learning[J]. Information Retrieval, 2000, 3: 127-163. [23] GILES C L, BOLLACKER K D, LAWRENCE S.CiteSeer: an automatic citation indexing system[C] //Proceedings of the Third ACM Conference on Digital Libraries. Pittsburgh, USA: ACM, 1998: 89-98. [24] PAN S, WU J, ZHU X, et al. Tri-party deep network representation[C] //Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence. New York, USA: IJCAI, 2016: 1895-1901. [25] SEN P, NAMATA G, BILGIC M,et al. Collective classification in network data[J]. AI Magazine, 2008, 29(3): 93-106. [26] GROVER A, LESKOVEC J. Node2vec: scalable feature learning for networks[C] //Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. San Francisco, USA: ACM, 2016: 855-864. [27] YANG C, LIU Z, ZHAO D, et al. Network representation learning with rich text information[C] //Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires, Argentina: AAAI, 2015: 2111-2117. [28] FAWCETT T. An introduction to ROC analysis[J]. Pattern Recognition Letters, 2006, 27(8): 861-874. [29] KIPF T N, WELLING M. Variational graph auto-encoders[EB/OL].(2016-11-26)[2023-07-01]. https://arxiv.org/abs/1611.07308. [30] PEROZZI B, AL-RFOU R, SKIENA S.Deepwalk: online learning of social representations[C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2014: 701-710. |
[1] | 闵海根,雷小平,李杰,童星,吴霞,方煜坤. 基于双层混合集成的自动驾驶汽车故障检测[J]. 山东大学学报 (工学版), 2022, 52(6): 30-40. |
[2] | 傅桂霞,邹国锋,毛帅,潘金凤,尹丽菊. 融合Gabor特征与卷积特征的小样本行人重识别[J]. 山东大学学报 (工学版), 2021, 51(3): 22-29. |
[3] | 秦军,张远鹏,蒋亦樟,杭文龙. 多代表点自约束的模糊迁移聚类[J]. 山东大学学报 (工学版), 2019, 49(2): 107-115. |
[4] | 沈冀,马志强,李图雅,张力. 面向短文本情感分析的词扩充LDA模型[J]. 山东大学学报(工学版), 2018, 48(3): 120-126. |
[5] | 陈斌 陈松灿 潘志松 李斌. 异常检测综述[J]. 山东大学学报(工学版), 2009, 39(6): 13-23. |
[6] | 李 莹,宋 刚 . 汉字笔迹鉴别中预处理算法实现[J]. 山东大学学报(工学版), 2007, 37(2): 80-83 . |
|