山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 80-89.doi: 10.6040/j.issn.1672-3961.0.2023.021
• 机器学习与数据挖掘 • 上一篇
高泽文1,2,王建3,魏本征1,2*
GAO Zewen1,2, WANG Jian3, WEI Benzheng1,2*
摘要: 为提高脑胶质瘤核磁共振成像(magnetic resonance imaging, MRI)图像分割精度及质量,设计一种混合偏移轴向自注意力机制的脑胶质瘤分割多层级轴向注意力网络(multi-level axial-attention net, MLA-Net )算法。MLA-Net算法框架中设计的混合偏移轴向自注意力机制和混和损失函数,分别用于提取更精确的全局相对位置关系、提升网络对细节结构特征的敏感程度和实现精确地分割胶质瘤模糊边界。试验结果表明,在BraTS 2018和2019的混合数据上,MLA-Net算法的dice系数可达到0.843 3, Hausdorff距离为2.587。MLA-Net算法的MRI图像脑胶质分割性能优良,可以融合全局相对位置特征和局部细节特征,更好地分割出脑胶质瘤感兴趣区域。
中图分类号:
[1] BEN K, HALL L O, GOLDGOF D B, et al. Ensembles of convolutional neural networks for survival time estimation of high-grade glioma patients from multimodal MRI[J]. Diagnostics, 2022, 12(2): 345-359. [2] AHIR B K, ENGELHARD H H, LAKKA S S. Tumor development and angiogenesis in adult brain tumor:glioblastoma[J].Molecular Neurobiology, 2020, 57: 2461-2478. [3] LI S, WANG C, CHEN J, et al. Signaling pathways in brain tumors and therapeutic interventions[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 8-31. [4] BAI J, VARGHESE J, JAIN R. Adult glioma WHO classification update, genomics, and imaging: what the radiologists need to know[J]. Top Magn Reson Imaging, 2020, 29(2): 71-82. [5] ANTONIO Di Ieva. Application of deep learning for automatic segmentation of brain tumors on magnetic resonance imaging: a heuristic approach in the clinical scenario[J]. Neuroradiology, 2021, 63(8): 1-10. [6] ANCA L, GROS U, WOLFGANG A, et al. PET for radiation treatment planning of brain tumours[J]. Radiotherapy and Oncology, 2010, 96(3): 325-327. [7] CHU R, KIM G, TAUHID S, et al. Whole brain and deep gray matter atrophy detection over 5 years with 3T MRI in multiple sclerosis using a variety of automated segmentation pipelines[J]. PLoS ONE, 2018, 13(11): 1-14. [8] TUSTISON N J, SHRINIDHI K L, WINTERMARK M, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation(simplified)with ANTsR[J]. Neuroinformatics, 2015, 13: 209-225. [9] KAUS M, WARFIELD S, NABAVI A, et al. Automated segmentation of MR images of brain tumors [J]. Radiology, 2001, 218(2): 586-591. [10] WU W, CHEN A, ZHAO L, et al. Brain tumor detection and segmentation in a CRF(conditional random fields)framework with pixel-pairwise affinity and superpixel-level features[J]. International Journal of Computer Assisted Radiology and Surgery, 2014, 9(2): 241-253. [11] KHAN A, SOHAIL A, ZAHOORA U, et al. A survey of the recent architectures of deep convolutional neural networks[J]. Artificial Intelligence Review, 2020, 53(8): 5455-5516. [12] MOHAMMED Y M A, EL S, JELLOULI I. A survey of methods for brain tumor segmentation-based MRI images[J]. Journal of Computational Design and Engineering, 2023, 10(1): 266-293. [13] ZHU Z, HE X, QI G, et al. Brain tumor segmentation based on the fusion of deep semantics and edge information in multimodal MRI[J]. Information Fusion, 2023, 91: 376-387. [14] HAVAEI M, DAVY A, WARDE-FARLEY D, et al.Brain tumor segmentation with deep neural networks[J].Medical Image Analysis, 2017, 35:18-31. [15] ISLAM M, VIBASHAN V S, JOSE V J M, et al. Brain tumor segmentation and survival prediction using 3D attention UNet[C] //Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 5th International Workshop, BrainLes 2019, Heldin Conjunction with MICCAI 2019. Shenzhen, China. Springer, 2020: 262-272. [16] LI X, CHEN H, QI X, et al. H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes[J]. IEEE Transactions on Medical Imaging, 2018, 37(12): 2663-2674. [17] MYRONENKO A. 3D MRI brain tumor segmentation using autoencoder regularization[C] // Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: 4th International Workshop, BrainLes 2018. Granada, Spain: Springer, 2019: 311-320. [18] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[J]. Advances in Neural Information Processing Systems, 2017: 30-40. [19] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C] //International Conference on Learning Representations. Vienna, Austria: ICLR, 2021: 21-31. [20] AZIZ M J,ZADEH M,FARNIA P, et al. Accurate automatic glioma segmentation in brain MRI images based on CapsNet[C] //International Conference of the IEEE Engineering in Medicine & Biology Society(EMBC). Guadalajara, Mexico: IEEE, 2021: 3882-3885. [21] JIA Q, SHU H. Bitr-unet: a CNN-transformer combined network for MRI brain tumor segmentation[C] //International MICCAI Brainlesion Workshop. Singapore: Springer, 2022: 3-14. [22] CHEN J, LU Y, YU Q, et al. Transunet: transformers make strong encoders for medical image segmentation[C] //International MICCAI Brainlesion Workshop. Strasbourg, France: Springer, 2021: 3-14. [23] ZHANG Y, LIU H, HU Q. Transfuse: fusing transformers and cnns for medical image segmentation[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer, 2021: 14-24. [24] WANG W, CHEN C, DING M, et al. Transbts: multimodal brain tumor segmentation using transformer[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France: Springer, 2021: 109-119. [25] VALANARASU J M J, OZA P, HACIHALILOGLU I, et al. Medical transformer: gated axial-attention for medical image segmentation[C] //International Conference on Medical Image Computing and Computer-Assisted Intervention. Strasbourg, France:Springer, 2021: 36-46. [26] QIN X, ZHANG Z, HUANG C, et al. U2-Net:going deeper with nested U-structure for salient object detection[J]. Pattern Recognition, 2020, 106: 107404. [27] WANG H, ZHU Y, GREEN B, et al. Axial-deeplab: stand-alone axial-attention for panoptic segmentation[C] //European Conference on Computer Vision. Scotland, UK: Springer, 2020: 108-126. [28] RAMACHANDRAN P, PARMAR N, VASWANI A, et al. Stand-alone self-attention in vision models[J]. Advances in Neural Information Processing Systems, 2019: 32-45. [29] SHAW P, USZKOREIT J, VASWANI A. Self-attention with relative position representations[C] //Proceedings of NAACL-HLT. New Orleans, USA: 2018: 464-468. [30] RAHMAN M A, WANG Y. Optimizing intersection-over-union in deep neural networks for image segmentation[C] //International Symposium on Visual Computing. Las Vegas, USA:Springer, 2016: 234-244. [31] ABDOLLAHI A, PRADHAN B, ALAMRI A. VNet: an end-to-end fully convolutional neural network for road extraction from high-resolution remote sensing data[J]. IEEE Access, 2020, 8: 179424-179436. [32] WANG Z, SIMONCELLI E P, BOVIK A C. Multiscale structural similarity for image quality assessment[C] //The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers. Pacific Grove, USA: IEEE, 2003: 1398-1402. [33] DE BOER P T, KROESE D P, MANNOR S, et al. A tutorial on the cross-entropy method[J]. Annals of Operations Research, 2005, 134(1): 19-67. [34] BAKAS S, AKBARI H, SOTIRAS A, et al. Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features[J]. Scientific Data, 2017, 4(1): 1-13. [35] MENZE B H, JAKAB A, BAUER S, et al. The multimodal brain tumor image segmentation benchmark(BRATS)[J]. IEEE Transactions on Medical Imaging, 2014, 34(10): 1993-2024. [36] ZHOU Z, RAHMAN S M M, TAJBAKHSH N, et al. Unet++: a nested U-net architecture for medical image segmentation[C] //International MICCAI Brainlesion Workshop. Granada, Spain:Springer, 2018: 3-11. [37] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C] //International MICCAI Brainlesion Workshop. Munich, Germany: Springer, 2015: 234-241. [38] HU Z, LI L, SUI A, et al. An efficient R-transformer network with dual encoders for brain glioma segmentation in MR images[J]. Biomedical Signal Processing and Control, 2023, 79: 104034. |
[1] | 李璐,张志军,范钰敏,王星,袁卫华. 面向冷启动用户的元学习与图转移学习序列推荐[J]. 山东大学学报 (工学版), 2024, 54(2): 69-79. |
[2] | 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108. |
[3] | 王旭晴,魏伟波,杨光宇,宋金涛,吕婷,潘振宽. 基于算法展开的图像盲去模糊深度学习网络[J]. 山东大学学报 (工学版), 2023, 53(6): 35-46. |
[4] | 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7. |
[5] | 王碧瑶,韩毅,崔航滨,刘毅超,任铭然,高维勇,陈姝廷,刘嘉巍,崔洋. 基于图像的道路语义分割检测方法[J]. 山东大学学报 (工学版), 2023, 53(5): 37-47. |
[6] | 周晓昕,廖祝华,刘毅志,赵肄江,方艺洁. 融合历史与当前交通流量的信号控制方法[J]. 山东大学学报 (工学版), 2023, 53(4): 48-55. |
[7] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
[8] | 宋佳芮,陈艳平,王凯,黄瑞章,秦永彬. 基于Affix-Attention的命名实体识别语义补充方法[J]. 山东大学学报 (工学版), 2023, 53(2): 70-76. |
[9] | 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114. |
[10] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[11] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[12] | 董璐璐,宋金涛,魏伟波,潘振宽. 多相图像分割变分模型的标签函数提升方法[J]. 山东大学学报 (工学版), 2022, 52(4): 54-68. |
[13] | 郝晋一,李鹏程,黄艺美,李金屏. 基于穿线法的轮胎X光图像畸变检测[J]. 山东大学学报 (工学版), 2022, 52(3): 9-17. |
[14] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[15] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
|