山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 69-79.doi: 10.6040/j.issn.1672-3961.0.2023.016
• 机器学习与数据挖掘 • 上一篇
李璐,张志军,范钰敏,王星,袁卫华*
LI Lu, ZHANG Zhijun, FAN Yumin, WANG Xing, YUAN Weihua*
摘要: 为解决推荐系统用户冷启动问题,提出面向冷启动用户的元学习与图转移学习序列推荐(sequential recommendation for cold-start users with meta graph transitional learning, MetaGTL)。MetaGTL在不使用其他辅助信息的前提下,采用图神经网络(graph neural network, GNN)建模序列间物品高阶关系生成用户物品嵌入;将交互序列构造为物品对集合,使用序列编码模块捕捉物品间的转移关系,动态建模用户兴趣;采用注意力机制,生成准确的用户特征;采用基于梯度的元学习方法训练模型,生成初始化模型;对模型的工作性能和结果进行详细分析,结合基线模型进行对比评价。试验结果表明,基于元学习与图转移学习的MetaGTL在缺少辅助信息的用户冷启动任务中具有更高的预测精度。
中图分类号:
[1] SCHAFER J B, FRANKOWSKI D, HERLOCKER J, et al. Collaborative filtering recommender systems[M]. Berlin, Heidelberg: Springer, 2007: 291-324. [2] LIU Q, WU S, WANG D Y, et al. Context-aware sequential recommendation[C] //2016 IEEE 16th International Conference on Data Mining(ICDM). Barcelona, Spain: IEEE, 2016: 1053-1058. [3] CHEN W, NIU Z D, ZHAO X Y, et al. A hybrid recommendation algorithm adapted in e-learning environments[J]. World Wide Web, 2014, 17: 271-284. [4] XIE Y Q, ZHOU P L, KIM S.Decoupled side information fusion for sequential recommendation[C] //Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. Madrid, Spain: SIGIR, 2022: 1611-1621. [5] WANG J L, DING K Z, JAMES C. Sequential recommendation for cold-start users with meta transitional learning[C] //Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2021: 1783-1787. [6] ZHENG Y J, LIU S Y, LI Z K, et al.Cold-start sequential recommendation via meta learner[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI, 2021, 35(5): 4706-4713. [7] LIKA B, KOLOMVATSOS K, HADJIEFTHYMIADES S. Facing the cold start problem in recommender systems[J]. Expert Systems with Applications, 2014, 41(4): 2065-2073. [8] HUANG X W, SANG J T, YU J. Learning to learn a cold-start sequential recommender[J]. ACM Transactions on Information Systems(TOIS), 2022, 40(2): 1-25. [9] LEE H, IM J, JANG S, et al. MeLU: meta-learned user preference estimator for cold-start recommendation[C] //Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 1073-1082. [10] BOBADILLA J, ORTEGA F, HERNANDO A, et al. A collaborative filtering approach to mitigate the new user cold start problem[J]. Knowledge-Based Systems, 2012, 26: 225-238. [11] FINN C, ABBEEL P, LEVINE S. Model-agnostic meta-learning for fast adaptation of deep networks[C] //Proceedings of the 34th International Conference on Machine Learning. Sydney, Australia: PMLR, 2017: 1126-1135. [12] DU Z X, WANG X W, YANG H X, et al. Sequential scenario-specific meta learner for online recommendation[C] //Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 2895-2904. [13] BHARADHWAJ H. Meta-learning for user cold-start recommendation[C] //2019 International Joint Conference on Neural Networks(IJCNN). Budapest, Hungary: IEEE, 2019: 19028320. [14] CHENG C, YANG H Q, LYU M R, et al. Where you like to go next: successive point-of-interest recommendation[C] //Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Beijing, China: AAAI, 2013: 2605-2611. [15] RENDLE S, FREUDENTHALER C, SCHMIDT-THIEME L. Factorizing personalized Markov chains for next-basket recommendation[C] //Proceedings of the 19th International Conference on World Wide Web. New York, USA: ACM, 2010: 811-820. [16] MIKOLOV T, KARAFIÁT M, BURGET L, et al.Recurrent neural network based language model[C] //Proceedings of the 16th Annual Conference of the International Speech Communication Association, INTERSPEECH. Chiba, Japan: ISCA, 2010: 1045-1048. [17] ZHU Y, LI H, LIAO Y K, et al. What to do next: modeling user behaviors by time-LSTM[C] //Proceedings of the 26th International Joint Conference on Artificial Intelligence. Melbourne, Australia: AAAI, 2017: 3602-3608. [18] HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL].(2016-03-29)[2023-01-10]. https://arxiv.org/abs/1511.06939. [19] TANG J X, WANG K. Personalized top-N sequential recommendation via convolutional sequence embedding[C] //Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2018: 565-573. [20] YUAN F J, KARATZOGLOU A, ARAPAKIS I, et al. A simple convolutional generative network for next item recommendation[C] //Proceedings of the Twelfth ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2019: 582-590. [21] YUAN F J, HE X N, JIANG H C, et al. Future data helps training: modeling future contexts for session-based recommendation[C] //Proceedings of The Web Conference 2020(WWW'20). New York, USA: ACM, 2020: 303-313. [22] WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C] //Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2019: 165-174. [23] WU S, TANG Y Y, ZHU Y Q, et al. Session-based recommendation with graph neural networks[C] //Proceedings of the AAAI Conference on Artificial Intelligence. Palo Alto, California, USA: AAAI, 2019: 346-353. [24] GUO L, TANG L, CHEN T, et al. DA-GCN: a domain-aware attentive graph convolution network for shared-account cross-domain sequential recommendation[EB/OL].(2021-05-07)[2023-01-10]. https://arxiv.org/pdf/2105.03300. [25] LIU F, LIU W W, LI X T, et al. Inter-sequence enhanced framework for personalized sequential recommendation[EB/OL].(2020-04-29)[2023-01-10]. https://arxiv.org/pdf/2004.12118. [26] HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C] //Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2020: 639-648. [27] GUO L, ZHANG J Y, CHEN T, et al. Reinforcement learning-enhanced shared-account cross-domain sequential recommen-dation[J/OL]. IEEE Transactions on Knowledge and Data Engineering.(2022-06-21)[2023-01-10]. https://ieeexplore.ieee.org/document/9802739. [28] WANG C K, MCAULEY J. Self-attentive sequential recommendation[C] //2018 IEEE International Conference on Data Mining(ICDM). Singapore: IEEE, 2018: 197-206. [29] LI J, REN P J, CHEN Z M, et al. Neural attentive session-based recommendation[C] //Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. New York, USA: ACM, 2017: 1419-1428. [30] WANG C, BLEI D M. Collaborative topic modeling for recommending scientific articles[C] //Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2011: 448-456. [31] LIU F K, LEE H J. Use of social network information to enhance collaborative filtering performance[J]. Expert Systems with Applications, 2010, 37(7): 4772-4778. [32] ZHANG Y J, SHI Z K, ZUO W L, et al. Joint personalized Markov chains with social network embedding for cold-start recommendation[J]. Neurocomputing, 2020, 386: 208-220. [33] WEI T X, WU Z W, LI R R, et al. Fast adaptation for cold-start collaborative filtering with meta-learning[C] //2020 IEEE International Conference on Data Mining(ICDM). Sorrento, Italy: IEEE, 2020: 661-670. [34] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: bayesian personalized ranking from implicit feedback[EB/OL].(2012-05-09)[2023-01-10]. https://arxiv.org/pdf/1205.2618. [35] PASZKE A, GROSS S, CHINTALA S, et al. Automatic differentiation in pytorch[EB/OL].(2017-10-29)[2023-01-10]. https://pytorch.org/docs/stable/notes/autograd.html. [36] LIU F, CHENG Z Y, ZHU L, et al. Interest-aware message-passing gcn for recommendation[C] //Proceedings of the Web Conference 2021. New York, USA: ACM, 2021: 1296-1305. [37] HE M K, PAN W K, MING Z. BAR: behavior-aware recommendation for sequential heterogeneous one-class collaborative filtering[J]. Information Sciences, 2022, 608: 881-899. [38] KINGMA D P, BA J L. ADAM: a method for stochastic optimization[EB/OL].(2017-01-30)[2023-01-10]. https://arxiv.org/pdf/1412.6980. |
[1] | 赵涛,张宁,王小超,马川义,田源,张圣涛,杨梓梁. 基于图神经网络轨迹预测的合流区交通冲突预测方法[J]. 山东大学学报 (工学版), 2024, 54(2): 36-46. |
[2] | 陈成,董永权,贾瑞,刘源. 基于交互序列特征相关性的可解释知识追踪[J]. 山东大学学报 (工学版), 2024, 54(1): 100-108. |
[3] | 郑顺,王绍卿,刘玉芳,李可可,孙福振. 基于动态掩码和多对对比学习的序列推荐模型[J]. 山东大学学报 (工学版), 2023, 53(6): 47-55. |
[4] | 王旭晴,魏伟波,杨光宇,宋金涛,吕婷,潘振宽. 基于算法展开的图像盲去模糊深度学习网络[J]. 山东大学学报 (工学版), 2023, 53(6): 35-46. |
[5] | 李家春,李博文,常建波. 一种高效且轻量的RGB单帧人脸反欺诈模型[J]. 山东大学学报 (工学版), 2023, 53(6): 1-7. |
[6] | 王碧瑶,韩毅,崔航滨,刘毅超,任铭然,高维勇,陈姝廷,刘嘉巍,崔洋. 基于图像的道路语义分割检测方法[J]. 山东大学学报 (工学版), 2023, 53(5): 37-47. |
[7] | 陈雷,赵耀帅,林彦,郭晟楠,万怀宇,林友芳. 交通流量预测的时间异质性图注意力网络[J]. 山东大学学报 (工学版), 2023, 53(5): 29-36. |
[8] | 于畅,伍星,邓秋菊. 基于深度学习的多视角螺钉缺失智能检测算法[J]. 山东大学学报 (工学版), 2023, 53(4): 104-112. |
[9] | 周晓昕,廖祝华,刘毅志,赵肄江,方艺洁. 融合历史与当前交通流量的信号控制方法[J]. 山东大学学报 (工学版), 2023, 53(4): 48-55. |
[10] | 宋佳芮,陈艳平,王凯,黄瑞章,秦永彬. 基于Affix-Attention的命名实体识别语义补充方法[J]. 山东大学学报 (工学版), 2023, 53(2): 70-76. |
[11] | 袁钺,王艳丽,刘勘. 基于空洞卷积块架构的命名实体识别模型[J]. 山东大学学报 (工学版), 2022, 52(6): 105-114. |
[12] | 李旭涛,杨寒玉,卢业飞,张玮. 基于深度学习的遥感图像道路分割[J]. 山东大学学报 (工学版), 2022, 52(6): 139-145. |
[13] | 孟令灿,聂秀山,张雪. 基于遮挡目标去除的公交车拥挤度分类算法[J]. 山东大学学报 (工学版), 2022, 52(4): 83-88. |
[14] | 王冰,马文明,武聪,郝昱猛. 融合信任相似度的偏置概率矩阵分解算法[J]. 山东大学学报 (工学版), 2022, 52(4): 110-117. |
[15] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
|