山东大学学报 (工学版) ›› 2024, Vol. 54 ›› Issue (2): 13-26.doi: 10.6040/j.issn.1672-3961.0.2023.252
宋修广1,赵涛1,毕研美2,张紫豪1,杜聪1,田源1*,孔晓光3
SONG Xiuguang1, ZHAO Tao1, BI Yanmei2, ZHANG Zihao1, DU Cong1, TIAN Yuan1*, KONG Xiaoguang3
摘要: 光纤传感技术作为当前交通领域的研究热点,是交通基础设施和交通安全的重要监测手段。围绕光纤传感技术检测与监测应力应变信号、温度信号及振动信号的能力,从交通基础设施及交通信息两方面入手,系统阐述国内外相关研究成果。分析总结当前光纤传感技术在交通领域研究和应用的不足之处,并对该技术未来在交通领域中的发展和实际工程应用做出展望。
中图分类号:
[1] 金尔. 隧道长寿命周期大修分解可行方案评价及监管策略研究[D]. 杭州: 浙江大学, 2020. JIN Er. Research on evaluation of feasible scheme and supervision strategy for tunnel overhaul decomposition based on long life cycle[D]. Hangzhou: Zhejiang University, 2020. [2] 朱燕,代志勇,张晓霞, 等. 分布式光纤振动传感技术及发展动态[J]. 激光与红外, 2011, 41(10): 1072-1075. ZHU Yan, DAI Zhiyong, ZHANG Xiaoxia, et al. Developments of distributed optical fiber vibration sensor[J]. Laser & Infrared, 2011, 41(10): 1072-1075. [3] SUN Z, WANG P, VURAN M, et al. MISE-PIPE: magnetic induction-based wireless sensor networks for underground pipeline monitoring[J]. Adhoc Networks, 2011, 9(3): 218-227. [4] WANG C, OLSON M, SHERMAN B, et al. Reliable leak detection in pipelines using integrated DdTS temperature and DAS acoustic fiber-optic sensor[C] //Proceedings of the 52nd Annual IEEE International Carnahan Conference on Security Technology. Montreal, Canada: ICCST, 2018: 95-99. [5] WU H, CHEN J, LIU X, et al. One-dimensional CNN-based intelligent recognition of vibrations in pipeline monitoring with DAS[J]. Journal of Lightwave Technology, 2019, 37(17): 4359-4366. [6] HICKE K, HUSSELS M, EISERMANN R, et al. Condition monitoring of industrial infrastructures using distributed fibre optic acoustic sensors[C] // Proceedings of 2017 25th International Conference on Optical Fiber Sensors. Jeju-Do, Korea: IEEE, 2017: 1-4. [7] DUCKWORTH G, OWEN A, WORSLEY J, et al. Distributed acoustic and seismic sensing performance for multi-threat, multi-environment border monitoring[C] //Proceedings of 2013 European Intelligence and Security Informatics Conference. Uppsala, Sweden: IEEE, 2013: 273-276. [8] 吴建清,宋修广. 智慧公路关键技术发展综述[J]. 山东大学学报(工学版), 2020, 50(4): 52-69. WU Jianqing, SONG Xiuguang. Review on smart highways critical technology[J]. Journal of Shandong University(Engineering Science), 2020, 50(4): 52-69. [9] BARRIAS A, CASAS J, VILLALBA S. A review of distributed optical fiber sensors for civil engineering applications[J]. Sensors, 2016, 16(5): 748. [10] RAJEEV P, KODIKARA J, CHIU W, et al. Distributed optical fibre sensors and their applications in pipeline monitoring[J]. Key Engineering Materials, 2013(558): 424-434. [11] 祝视, 郑惠敏, 王海燕. Φ-OTDR技术在光缆故障快速定位中的应用研究[J]. 湖南电力, 2020, 40(5): 47-50. ZHU Shi, ZHENG Huimin, WANG Haiyan. Application research on Φ-OTDR technology for quickly locating in optical cable faults[J]. Hunan Electric Power, 2020, 40(5): 47-50. [12] MOHAN A, POOBAL S. Crack detection using image processing: a critical review and analysis[J]. Alexandria Engineering Journal, 2018, 57(2): 787-798. [13] LIU F, LIU J, WANG L. Asphalt pavement crack detection based on convolutional neural network and infrared thermography[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(11): 22145-22155. [14] MA J, ZHAO X, HE S, et al. Review of pavement detection technology[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 121-137. [15] 陈少幸, 张肖宁, 徐全亮, 等. 沥青混凝土路面光栅应变传感器的试验研究[J]. 传感技术学报, 2006(2): 396-398. CHEN Shaoxing, ZHANG Xiaoning, XU Quanliang, et al. Experiment and research of grating strain sensor on asphalt pavement[J]. Chinese Journal of Sensors and Actuators, 2006(2): 396-398. [16] 陈凤晨, 谭忆秋, 董泽蛟, 等. 基于光纤光栅技术的沥青路面结构应变场分析[J]. 公路交通科技, 2008(10): 9-12. CHEN Fengchen, TAN Yiqiu, DONG Zejiao, et al. Research on strain field of asphalt pavement based on FBG sensor technique[J]. Journal of Highway and Transportation Research and Development, 2008(10): 9-12. [17] 宋宏伟, 覃丽坤, 李渊, 等. 光纤传感监测技术用于沥青路面损伤监测的研究[J]. 公路工程, 2015, 40(5): 141-145. SONG Hongwei, QIN Likun, LI Yuan, et al. Research on optical fiber sensing technology applied to damage detection of asphalt pavement[J]. Highway Engineering, 2015, 40(5): 141-145. [18] TAN Y, WANG H, MA S, et al. Asphalt pavement compaction monitoring based on fiber grating sensing technology[J]. China Journal of Highway and Transport, 2014, 27(5): 112-117. [19] TAN Y, CHEN F, DONG Z, et al. Calculation method of permanent deformation for asphalt pavement based on fiber Bragg grating sensing technology[J]. Journal of Dalian Maritime University, 2008, 34(4): 119-122. [20] TAN Y, DONG Z, TIAN G, et al. Evaluating method of the coordination deformation between asphalt mixture and fiber Bragg grating sensor[J]. Journal of Civil, Architectural & Environmental Engineering, 2009, 31(2): 100-104. [21] 张冀雯, 马宪永, 赵含, 等. 基于分布式光纤形状传感的沥青混合料车辙变形监测研究[J]. 中国公路学报, 2023, 36(3): 98-107. ZHANG Jiwen, MA Xianyong, ZHAO Han, et al. Monitoring rutting deformation of asphalt using distributed optical fiber shape sensing technology[J]. China Journal of Highway and Transport, 2023, 36(3): 98-107. [22] MIN Y, TAO J, REN W. A high-precision online monitoring system for surface settlement imaging of railway subgrade[J]. Measurement, 2020, 159: 107707. [23] 刘玉涛. 基于分布式光纤传感技术的新旧路基沉降变形监测研究[D]. 南京: 南京航空航天大学, 2014. LIU Yutao. Monitoring research for the settlement of young and old subgrades based on distributed optical fiber sensing technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. [24] LI J, ZHANG H, LIU Y, et al. Fiber Bragg grating monitoring technology applied in soft ground settlement of highway[J]. Journal of Central South University(Science and Technology), 2011, 42(5): 1442-1446. [25] ZHANG D, HE J, XUE Y, et al. Investigation of settlement monitoring method based on distributed Brillouin fiber optical sensor[J]. Measurement, 2019, 134: 118-122. [26] 韦超群,邓清禄. 基于分布式光纤技术的路基沉降监测应用研究[J]. 工程地质学报, 2020, 28(5): 1091-1098. WEI Chaoqun, DENG Qinglu. Research on application of distributed optical fiber monitoring technology for subgrade settlement[J]. Journal of Engineering Geology, 2020, 28(5): 1091-1098. [27] CAO D, ZHU H, GUO C, et al. Investigating the hydro-mechanical properties of calcareous sand foundations using distributed fiber optic sensing[J]. Engineering Geology, 2021, 295: 106440. [28] 姜臻. 适用于路基监测的分布式光纤传感器应用研究[D]. 大连: 大连理工大学, 2016. JIANG Zhen. Application of a distributed optical fiber sensor for road subgrade monitorin[D]. Dalian: Dalian University of Technology, 2016. [29] 钱振东,黄卫,关永胜,等. BOTDA在沥青混凝土铺装层裂缝监测中的应用[J].东南大学学报(自然科学版), 2008, 38(5): 799-803. QIAN Zhendong, HUANG Wei, GUAN Yongsheng, et al. Application of BOTDA on cracking monitoring for asphalt concrete pavament[J]. Journal of Southeast University(Natural Science Edition), 2008, 38(5): 799-803. [30] 耿任山. 水泥稳定碎石基层裂缝发展规律研究[D]. 南京: 南京航空航天大学, 2016. GENG Renshan. Research on crack development law of cement stabilized macadam base[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016. [31] 张泽尧. 基于分布式光纤传感技术的隧道衬砌变形监测及评估研究[D]. 石家庄: 石家庄铁道大学, 2022. ZHANG Zeyao. Research on tunnel lining deformation monitoringand evaluation based on distributed optical fiber sensing technology[D]. Shijiazhuang: Shijia-zhuang Tiedao University, 2022. [32] LIU Q, WANG J, XIAO L, et al. Application of OFDR-based sensing technology in geo-mechanical model test on tunnel excavation using cross rock pillar method[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(5): 1063-1075. [33] 姚忠明. 基于光纤光栅传感的水下盾构隧道结构变形状态感知研究[D]. 重庆: 重庆交通大学, 2022. YAO Zhongming. Research on deformation state sensing of underwater shield tunnel structure based on fiber Bragg grating sensing[D]. Chongqing: Chongqing Jiaotong University, 2022. [34] 潘建阁. 深圳复合地层对盾构隧道衬砌管片结构受力和变形的影响分析[D]. 北京: 北京交通大学, 2015. PAN Jiange. Analysis of composite strata on force and deformation of shield tunnel lining segment structure in Shenzhen[D]. Beijing: Beijing Jiaotong University, 2015. [35] 朱宁, 王兴. 基于分布式光纤感测技术的苏州盾构隧道管片变形监测分析[J]. 江苏建筑, 2018(6): 72-75. ZHU Ning, WANG Xing. Monitoring and analysis of segment deformation in suzhou shield tunnel based on distributed optical fiber sensing technology[J]. Jiangsu Construction, 2018(6): 72-75. [36] 张宝祥. 多种受力状态下结构分布式光纤传感应变传递及裂纹监测[D]. 哈尔滨: 哈尔滨工业大学, 2015. ZHANG Baoxiang. Strain transmission and cracks determination of structures under various loading conditions by distributed optical fiber sensors[D]. Harbin: Harbin Institute of Technology, 2015. [37] 刘浩. 混凝土结构裂缝分布式光纤监测试验研究[D]. 苏州: 苏州科技大学, 2020. LIU Hao. The experimental study of distributed optical fiber for concrete structure cracks monitoring technology[D]. Suzhou: Suzhou University of Science and Technology, 2020. [38] SUI Y, CHENG X H, WEI J X. Distributed fibre optic monitoring of damaged lining in double-arch tunnel and analysis of its deformation mode[J]. Tunnelling and Underground Space Technology Incorporating Trenchless Technology Research, 2021, 110: 103812. [39] 陈景星. 高速公路梁桥加宽桩基础沉降差异控制技术研究[D]. 西安: 长安大学, 2013. CHEN Jingxing. Research on differential settlement control technology of pile foundation used in widenned beam bridge for expressway widenning[D]. Xi'an: Chang'an University, 2013. [40] 褚豪. 桥梁病害可视化表达研究[D]. 武汉: 华中科技大学, 2020. CHU Hao. Study on the visualization of bridge disease[D]. Wuhan: Huazhong University of Science & Technology, 2020. [41] 万里冰,武湛君,张博明,等. 基于光纤光栅传感技术的桥梁结构内部应变监测[J].光电子·激光, 2004, 15(12): 1472-1476. WAN Libing, WU Zhanjun, ZHANG Boming, et al. Internal strain monitoring of bridge structure based on fiber Bragg grating sensing technology[J]. Journal of Optoelectronics·Laser, 2004, 15(12): 1472-1476. [42] LIU Y Q, DU Y L, WANG X M, et al. Application research of submerged F-P optical fiber strain sensor used in the health monitoring of concrete bridge[J]. Optical Technology, 2006, 32(3): 349-352. [43] CHAN T H T, YU L, TAM H Y, et al. Fiber Bragg grating sensors for structural health monitoring of Tsing Ma bridge: background and experimental observation[J]. Engineering Structures, 2006, 28(5): 648-659. [44] XU J, DONG Y, ZHANG Z, et al. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors[J]. Measurement Science and Technology, 2016, 27: 124017. [45] 张欣,樊锋,林宏磊,等. 基于长标距光纤应变传感器的桥梁挠度识别技术研究[J]. 建筑结构, 2022, 52(增刊2): 1932-1937. ZHANG Xin, FAN Feng, LIN Honglei, et al. Research on bridge deflection identification technology based on long gauge fiber optic strain sensor[J]. Building Structure, 2022, 52(Suppl. 2): 1932-1937. [46] 蒋孝鹏,邓清禄,胡晓磊,等. 分布式光纤在桥梁监测中的应用研究[J]. 建筑结构, 2018, 48(增刊1): 617-620. JIANG Xiaopeng, DENG Qinglu, HU Xiaolei, et al. Research on application of distributed optical fiber in bridge monitoring[J]. Building Structure, 2018, 48(Suppl. 1): 617-620. [47] 田长彬,王静,张峰,等. 用于桥梁钢管混凝土裂缝监测的FBG传感器研究[J]. 仪表技术与传感器, 2017(9): 20-23. TIAN Changbin, WANG Jing, ZHANG Feng, et al. Study of fiber Bragg grating sensor for monitoring of concrete cracks in bridge steel tube[J]. Instrument Technique and Sensor, 2017(9): 20-23. [48] FERNANDEZ I, BERROCAL C G, ALMFELDT S, et al. Monitoring of new and existing stainless-steel reinforced concrete structures by clad distributed optical fibre sensing[J]. Structural Health Monitoring, 2023, 22(1): 257-275. [49] 郭永兴,李志雄. 增敏型光纤布拉格光栅锚索测力传感器[J].激光与光电子学进展, 2023, 60(5): 78-85. GUO Yongxing, LI Zhixiong. Sensitized fiber Bragg grating anchor cable force sensor[J]. Laser & Optoelectronics Progress, 2023, 60(5): 78-85. [50] 覃荷瑛, 林勇, 姜涌, 等. 光纤光栅传感器在斜拉桥索力监测中的应用[J]. 铁道建筑, 2020, 60(10): 51-55. QIN Heying, LIN Yong, JIANG Yong, et al. Application of fiber Bragg grating sensor in cable force monitoring of cable-stayed bridge[J]. Railway Engineering, 2020, 60(10): 51-55. [51] GE L F, DAN D H, KOO K Y, et al. An improved system for long-term monitoring of full-bridge traffic load distribution on long-span bridges[J]. Structures, 2023, 54: 1076-1089. [52] EVERALL L, GALLON A, ROBERTS D. Optical fibre strain sensing for practical structural load monitoring[J]. Sensor Review, 2000, 20(2): 113-119. [53] KIM S W, YUN D W, PARK D U, et al. Vehicle load estimation using the reaction force of a vertical displacement sensor based on fiber Bragg grating[J]. Sensors, 2022, 22(4): 1572. [54] PIMENTEL R, RIBEIRO D, MATOS L, et al. Bridge weigh-in-motion system for the identification of train loads using fiber-optic technology[J]. Structures, 2021, 30: 1056-1070. [55] 刘胜春. 光纤光栅智能材料与桥梁健康监测系统研究[D]. 武汉: 武汉理工大学, 2006. LIU Shengchun. The study on application of FBG intelligent materials to bridge health monitoring system[D]. Wuhan: Wuhan University of Technology, 2006. [56] 苑会珍,葛俊锋,叶林,等. 基于线偏振度的非接触式路面状态探测方法[J]. 仪表技术与传感器, 2017, 415(8): 89-91. YUAN Huizhen, GE Junfeng, YE Lin, et al. Noncontact road conditio detection method based on degree of linear polarization[J]. Instrument Technique and Sensor, 2017, 415(8): 89-91. [57] 张久鹏,王培,葛敬勇,等. 基于红外技术的沥青路面积水结冰厚度测试方法与影响因素[J].东南大学学报(自然科学版), 2019, 49(6): 1187-1192. ZHANG Jiupeng, WANG Pei, GE Jingyong, et al. Test methods and influencing factors for asphalt pavement hydrops and icing thickness detection based on infrared technology[J]. Journal of Southeast University(Natural Science Edition), 2019, 49(6): 1187-1192. [58] ZHANG J, WANG P, WANG H, et al. Development and verification of integrated photoelectric system for noncontact detection of pavement ponding and freezing[J]. Structural Control & Health Monitoring, 2021, 28: e2719. [59] WANG P, ZHOU W, BAO Y, et al. Ice monitoring of a full-scale wind turbine blade using ultrasonic guided waves under varying temperature conditions[J]. Structural Control & Health Monitoring, 2018, 25: e2138. [60] ZHAO W, XU L, BAI J, et al. Sensor-based risk perception ability network design for drivers in snow and ice environmental freeway: a deep learning and rough sets approach[J]. Soft Computing, 2018, 22(5): 1457-1466. [61] GUI K, GE J, YE L, et al. The piezoelectric road status sensor using the frequency scanning method and machine-learning algorithms[J]. Sensors and Actuators A: Physical, 2019, 287(1): 8-20. [62] ROY S, IZAD A, DEANNA R G, et al. Smart ice detection systems based on resonant piezoelectric transducers[J]. Sensors and Actuators A: Physical, 1998, 69(3): 243-250. [63] TROIANO A, PASERO E, MESIN L. New system for detecting road ice formation[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(3): 1091-1101. [64] AMOIROPOULOS K, KIOSELAKI G, KOURKOUMELIS N, et al. Shaping beam profiles using plastic optical fiber tapers with application to ice sensors[J]. Sensors, 2020, 20(9): 2503. [65] MARTINEZ J, RODENAS A, STAKE A, et al. Harsh-environment-resistant OH-vibrations-sensitive mid-infrared water-ice photonic sensor[J]. Advanced Materials Technologies, 2017, 2: 1700085. [66] GE J, LIU J, GUI K, et al. Atmospheric icing measurement and online ice type recognition for aircraft utilizing optical fiber sensor and machine learning algorithms[J]. Measurement, 2022, 205: 112215. [67] 高明, 张江涛, 赵振刚, 等. 基于光纤传感的输电线路覆冰监测系统研究[J]. 传感技术学报, 2018, 31(8): 1295-1300. GAO Ming, ZHANG Jiangtao, ZHAO Zhengang,et al. Monitoring and analysis of icing on transmission lines based on optical fiber sensing[J]. Chinese Journal of Sensors and Actuators, 2018, 31(8): 1295-1300. [68] 周恺, 张睿哲, 蔡瀛淼, 等. 基于分布式光纤的架空输电线路覆冰监测技术及应用[J]. 水电能源科学, 2020, 38(7): 177-180. ZHOU Kai, ZHANG Ruizhe, CAI Yingmiao, et al. Application and research of overhead transmission line icing monitoring technology based on distributed optical fiber[J]. Water Resources and Power, 2020, 38(7): 177-180. [69] 李先锋, 徐志钮, 郭一帆, 等. 基于光纤传感的输电线路覆冰监测技术应用评述[J]. 华北电力大学学报(自然科学版), 2023, 50(2): 22-34. LI Xianfeng, XU Zhiniu, GUO Yifan, et al. Review of application of icing monitoring technology for transmission lines based on optical fiber sensing[J]. Journal of North China Electric Power University(Natural Science Edition), 2023, 50(2): 22-34. [70] 陆侃. 道路结冰与积水智能传感器系统研究[D]. 合肥: 中国科学技术大学, 2016. LU Kan. Research on intelligent sensor system of road icing and road waterlogging[D]. Hefei: University of Science and Technology of China, 2016. [71] TAN S, GE J, YE L, et al. Road surface icing detecting system based on multiple sensor[J]. Transducer and Microsystem Technology, 2016, 35(1): 107-109. [72] 王玎睿, 邓霄, 张均, 等. 面向冰盖剖面的高空间分辨率分布式光纤测温系统设计[J]. 应用光学, 2021, 42(5): 941-948. WANG Dingrui, DENG Xiao, ZHANG Jun, et al. High spatial resolution distributed optical fiber temperature measurement system for ice cover profile[J]. Journal of Applied Optics, 2021, 42(5): 941-948. [73] KOMATSU K, FUJIHASHI K, OKUTSU M. Application of the optical sensing technology to the civil engineering field with optical fiber strain measurement device(BOTDR)[C] //Proceedings of Conference on Advanced Sensor Systems and Applications. Shanghai, China: SPIE, 2002: 352-361. [74] 曹立军. 分布式光纤温度测量及数据处理技术研究 [D]. 合肥: 合肥工业大学, 2006. CAO Lijun. Research on the distributed fiber optic temperature measurement and the data processing[D]. Hefei: Hefei University of Technology, 2006. [75] 杨斌, 皋魏, 席刚, 等. 新型超远程分布式光纤拉曼温度传感器[J]. 光通信研究, 2011, 4(20): 54-56. YANG Bin, GAO Wei, XI Gang, et al. A novel ultra-long range distributed optical fiber Raman temperature sensor[J]. Study on Optical Communications, 2011, 4(20): 54-56. [76] 张岩红. 分布式光纤温度传感器信号处理系统的研究与设计[D]. 秦皇岛: 燕山大学, 2003. ZHANG Yanhong. Study and design on signal pocessing system of distributed optic fiber temperature sensor[D]. Qinhuangdao: Yanshan University, 2003. [77] XU M G, ARCHAMBAULT J L, REEKIE L, et al. Structural bending sensor using fibre gratings[C] //Proceedings of the SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation. San Diego, CA, USA: SPIE, 1994: 407-413. [78] IWASHIMA T, INOUE A, SHIGEMATSU M, et al. Temperature compensation technique for fibre Bragg gratings using liquid crystalline polymer tubes[J]. Electronics Letters, 1997, 33(5): 417-419. [79] XU M G, ARCHAMBAULT J L, REEKIE L, et al. Discrimination between strain and temperature effects using dual-wavelength fiber grating sensors[J]. Electronics Letters, 1994, 30(13): 1085-1087. [80] JAMES S W, DOCKNEY M L, TATAM R P. Simultaneous independent temperature and strain measurement using in-fibre Bragg grating sensors[J]. Electronics Letters, 1996, 32(12): 1133-1134. [81] DU H Z, ZHANG Z S, WU H, et al. Single-ended self-calibration high-accuracy Raman distributed temperature sensing based on multi-core fiber[C] //Proceedings of 2021 Conference on Lasers and Electro-Optics(CLEO). San Jose, CA, USA: IEEE, 2021: 21298683. [82] LI J, ZHANG Q, XU Y, et al. High-accuracy distributed temperature measurement using difference sensitive-temperature compensation for Raman-based optical fiber sensing[J]. Optics Express, 2019, 27(25): 36183-36196. [83] HE T, RAN Y L, LIU T, et al. Distributed temperature/vibration fiber optic sensor with high precision and wide bandwidth[J]. IEEE Photonics Journal, 2019, 11(6): 7104811. [84] 李震, 冷先伦, 殷秋雨. 基于分布式光纤监测的隧道火灾温度分布特征研究[J]. 现代隧道技术, 2022, 59(6): 132-139. LI Zhen, LENG Xianlun, YIN Qiuyu. Research on the temperature distribution characteristics of tunnel fire based on distributed optical fiber monitoring[J]. Modern Tunnelling Technology, 2022, 59(6): 132-139. [85] 胡其志, 殷秋雨, 李鸣, 等. 分布式光纤在公路隧道火灾监控中的应用研究[J]. 公路, 2020, 65(4): 383-387. HU Qizhi, YIN Qiuyu, LI Ming, et al. Research on the application of distributed fiber optics in fire monitoring of highway tunnels[J]. Highway, 2020, 65(4): 383-387. [86] 殷秋雨. 基于分布式光纤监测的隧道火灾温度分布特征研究[D]. 武汉: 湖北工业大学, 2021. YIN Qiuyu. Research on temperature distribution characteristics of tunnel fire based on distributed optical fiber monitoring[D]. Wuhan: Hubei University of Tech-nology, 2021. [87] 孙东旭, 姚斌. 特大断面公路隧道线型感温火灾探测系统适用性研究[J]. 火灾科学, 2021, 30(3): 165-172. SUN Dongxu, YAO Bin. Applicability of linear heat fire detection system in super-large section highway tunnels[J]. Fire Safety Science, 2021, 30(3): 165-172. [88] SUN X. Fiber Bragg grating temperature measurement combined with infrared flame detector applied to highway tunnel fire monitoring[J]. Journal of Electrotechnology, Electrical Engineering and Management, 2022, 5(1): 61-67. [89] 付华, 谢森, 徐耀松, 等. 光纤布拉格光栅传感技术在隧道火灾监测中的应用研究[J]. 传感技术学报, 2013, 26(1): 133-137. FU Hua, XIE Sen, XU Yaosong, et al. Application research of optical fiber Bragg grating sensing technology in the tunnel fire monitoring[J]. Chinese Journal of Sensors and Actuators, 2013, 26(1): 133-137. [90] 曹桂芳. 双头结构RDTS隧道火灾报警系统的研究[J]. 电子技术, 2020, 49(6): 44-45. CAO Guifang. Study on RDTS tunnel fire alarm system with double head structure[J]. Electronic Technology, 2020, 49(6): 44-45. [91] 姜云, 佘有光, 姜超, 等. 分布式光纤在大型桥梁建设中温度监测的智能化技术应用[J]. 公路交通科技(应用技术版), 2020, 16(9): 241-244. JIANG Yun, YU Youguang, JIANG Chao, et al. Intelligent technology application of distributed fiber optic in temperature monitoring in large bridge construction[J]. Highway Transportation Technology(Applied Techno-logy Edition), 2020, 16(9): 241-244. [92] WEN X L, LI Y, WEI H. Urban bridges temperature measurement system based on fiber Bragg grating sensing technology[J]. Applied Mechanics and Materials, 2013, 2547: 361-363. [93] XIAO F, HULSEY J L, BALASUBRAMANIAN R. Fiber optic health monitoring and temperature behavior of bridge in cold region[J]. Structural Control & Health Monitoring, 2017, 24(11): e2020. [94] 王宇斌. 大跨预应力混凝土刚构-连续梁桥温度效应研究与预测[D]. 济南: 济南大学, 2020. WANG Yubin. Research and prediction on temperature effect of long span prestressed concrete rigid continuous girder bridge[D]. Jinan: University of Jinan, 2020. [95] MELLER S A, VRIES M J D, ARYA V, et al. Optical fiber sensors for vehicle detection[C] //Proceedings of SPIE. Philadelphia, PA, USA: SPIE, 1995: 39-45. [96] 王茂宁. 基于分布式光纤传感的高速公路车辆检测与轨迹预测关键技术研究[D]. 成都: 四川大学, 2021. WANG Maoning. Research on key technologies for expressway vehicle detection and trajectory prediction with optical distributed acoustic sensing[D]. Chengdu: Sichuan University, 2021. [97] 王茂宁, 李钟麒, 张建伟, 等. 基于分布式光纤传感系统的车辆轨迹提取方法[J]. 工程科学与技术, 2021, 53(2): 141-150. WANG Maoning, LI Zhongqi, ZHANG Jianwei, et al. Vehicle trajectory extraction method using distributed optical acoustic sensing[J]. Advanced Engineering Sciences, 2021, 53(2): 141-150. [98] LIU H, MA J, XU T, et al. Vehicle detection and classification using distributed fiber optic acoustic sensing[J]. IEEE Transactions on Vehicular Technology, 2020, 69(2): 1364-1374. [99] 叶彬. 分布式光纤传感车辆振动识别及车速算法研究[D]. 杭州: 浙江大学, 2018. YE Bin. Research on distributed optical fiber sensing for vehicle identification and speed measurement[D]. Hangzhou: Zhejiang University, 2018. [100] CATALANO E, COSCETTA A, CERRI E, et al. Automatic traffic monitoring by phi-OTDR data and Hough transform in a real-field environment[J]. Applied Optics, 2021, 60(13): 3579-3584. [101] FAJKUS M, FRIDRICH M, NEDOMA J, et al. PDMS-FBG-based fiber optic system for traffic monitoring in urban areas[J]. IEEE Access, 2020, 8: 127648-127658. [102] 吴建清, 王其峰, 厉周缘, 等. 互通式立交风险冲突识别与预警综述[J] 山东大学学报(工学版), 2022, 52(6): 1-13. WU Jianqing, WANG Qifeng, LI Zhouyuan, et al. Review of risk conflict identification and early warning for interchange[J]. Journal of Shandong University(Engineering Science), 2022, 52(6): 1-13. [103] 李晨曦. 基于分布式光纤传感技术的车辆撞击道路护栏检测研究[J]. 中国水运(下半月), 2019, 19(7): 128-129. LI Chenxi. Research on vehicle collision detection of road guardrails based on distributed fiber optic sensing technology[J]. China Water Transport, 2019, 19(7): 128-129. [104] 刘一梦. “双盲”条件下分布式光纤振动传感信号多源分离方法[D]. 成都: 电子科技大学, 2022. LIU Yimeng. Multi-source separation method of distributed optical fiber vibration sensing signal under two "blind" conditions[D]. Chengdu: University of Electronic Science and Technology of China, 2022. |
[1] | 赵涛,张宁,王小超,马川义,田源,张圣涛,杨梓梁. 基于图神经网络轨迹预测的合流区交通冲突预测方法[J]. 山东大学学报 (工学版), 2024, 54(2): 36-46. |
[2] | 杨巨成, 魏峰, 林亮, 贾庆祥, 刘建征. 驾驶员疲劳驾驶检测研究综述[J]. 山东大学学报 (工学版), 2024, 54(2): 1-12. |
[3] | 吕国仁,闫书明,白书锋,贾 宁,马 亮 . 高速公路新型波形梁护栏端头实车碰撞性能研究[J]. 山东大学学报(工学版), 2008, 38(4): 47-52 . |
|