您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (5): 10-19.doi: 10.6040/j.issn.1672-3961.0.2022.275

• 机器学习与数据挖掘 • 上一篇    

多源信号融合往复式压缩机故障诊断方法

唐洋1,肖枭1,关绵涛1,倪申童1,雷波2,杨鑫3   

  1. 1.西南石油大学机电工程学院, 四川 成都 610500;2.四川长宁天然气开发有限责任公司, 四川 成都 610051;3.四川长虹电源股份有限公司, 四川 绵阳 621000
  • 发布日期:2023-10-19
  • 作者简介:唐洋(1988— ),男,四川遂宁人,副教授,硕士生导师,博士,主要研究方向为油气装备现代设计与仿真、设备设施完整性研究. E-mail:tangyanggreat@126.com
  • 基金资助:
    成都市国际科技合作项目(2020-GH02-00041-HZ);博士后创新人才支持计划资助项目(BX20190292)

The multi-source signal fusion reciprocating compressor fault diagnosis method

TANG Yang1, XIAO Xiao1, GUAN Miantao1, NI Shentong1, LEI Bo2, YANG Xin3   

  1. 1. School of Mechanical and Electrical Engineering, Southwest Petroleum University, Chengdu 610500, Sichuan, China;
    2. Sichuan Changning Natural Gas Development Co., Ltd., Chengdu 610051, Sichuan, China;
    3. Sichuan Changhong Power Supply Co., Ltd., Mianyang 621000, Sichuan, China
  • Published:2023-10-19

摘要: 针对页岩气开采中部分往复式压缩机的故障诊断仅为基于单信号的故障诊断,造成故障诊断结果的鲁棒性较低、不适用于全面监测往复式压缩机的问题,提出一种多源信号融合往复式压缩机故障诊断方法。建立多源信号融合模型,对往复式压缩机多振动信号进行有效处理;利用麻雀搜索算法(sparrow search algorithm, SSA)自适应优化核极限学习机(kernel extreme learning machine, KELM),建立基于SSA优化KELM的往复式页岩气压缩机故障诊断模型,使用往复式压缩机模拟故障试验数据对该方法进行验证并与不同优化算法比较分析。分析结果表明,经SSA优化的KELM故障诊断方法能够有效提高KELM在往复式压缩机故障诊断中的分类精度,证明了该方法在往复式压缩机故障检测方面的优越性和有效性,为多信号融合情况下复杂的动设备实现精确故障诊断提供了参考。

关键词: 往复式压缩机, 故障诊断, 多源信号融合, 麻雀搜索算法, 极限学习机

中图分类号: 

  • TP306
[1] 窦唯. 往复压缩机气阀故障诊断的智能方法研究[D].大庆:东北石油大学,2004. DOU Wei. Research on intelligent method for fault diagnosis of reciprocating compressor valve[D]. Daqing: Northeast Petroleum University, 2004.
[2] 张明,江志农. 基于多源信息融合的往复式压缩机故障诊断方法[J]. 机械工程学报, 2017, 53(23): 46-52. ZHANG Ming, JIANG Zhinong. Fault diagnosis method of reciprocating compressor based on multi-source information fusion[J]. Journal of Mechanical Engineering, 2017, 53(23): 46-52.
[3] 吴宇飞. 基于多源信息融合的往复压缩机智能诊断技术研究[D]. 沈阳:东北大学, 2016. WU Yufei. Research on intelligent diagnosis technology of reciprocating compressor based on multi-source information fusion[D]. Shenyang: Northeast University, 2016.
[4] HAN Dongying, TIAN Jinghui, XUE Peng, et al. A novel intelligent fault diagnosis method based on dual convolutional neural network with multi-level information fusion[J]. Journal of Mechanical Science and Technology, 2021, 35(8): 3331-3345.
[5] LIU Yuwei, CHENG Yuqiang, ZHANG Zhenzhen, et al. Multi-information fusion fault diagnosis based on KNN and improved evidence theory[J]. Journal of Vibration Engineering & Technologies, 2022, 10(3): 841-852.
[6] ZHAO Haiyang, WANG Jindong, LI Jay, et al. A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors[J]. Mech Syst Signal Process, 2018, 110: 273-295.
[7] ZHANG Ying, JIN Chen, MA Bo. Fault diagnosis of reciprocating compressor using a novel ensemble empirical mode decomposition convolutional deep belief network[J]. Measurement, 2020, 156:107619.
[8] 肖顺根,唐友福. 往复压缩机故障机理与诊断方法研究[M]. 沈阳:东北大学出版社, 2019.
[9] 钱志勤,王志鹏,曹群,等. 基于差分进化的信息融合故障诊断方法[J]. 振动.测试与诊断, 2013, 33(202): 137-143. QIAN Zhiqin, WANG Zhipeng, CAO Qun, et al. Information fusion fault diagnosis method based on differential evolution[J]. Vibration. Test and Diagnosis, 2013, 33(202):137-143.
[10] 李凌均,韩捷,李朋勇,等. 矢双谱分析及其在机械故障诊断中的应用[J]. 机械工程学报, 2011(17): 50-54. LI Lingjun, HAN Jie, LI Pengyong, et al. Vector bispectrum analysis and its application in mechanical fault diagnosis[J]. Journal of Mechanical Engineering, 2011(17): 50-54.
[11] 龙霞飞. 大型风力发电机组齿轮箱智能化故障诊断方法研究[D]. 广州: 华南理工大学, 2019. LONG Xiafei. Research on intelligent fault diagnosis method of large wind turbine gearbox[D]. Guangzhou: South China University of Technology, 2019.
[12] HUANG Guangbin, ZHU Qinyu, SIEW Chee Kheong. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70(1/2/3):489-501.
[13] HUANG Guangbin, WANG Dianhui, LAN Yuan. Extreme learning machines: a survey[J]. International Journal of Machine Leaning and Cybernetics, 2011, 2(2):107-122.
[14] HUANG Guangbin, SIEW Chee Kheong. Extreme learning machine: RBF network case[C] // 8th ICARCV Control, Automation, Robotics and Vision Conference, 2004.Kunming, China:IEEE, 2004:1029-1036.
[15] HUANG Guangbin, SIEW Chee Kheong. Extreme learning machine with randomly assigned rbf kernels[J]. International Journal of Information Technology, 2005, 11(1):16-24.
[16] FEI Shengwei, LIU Yingzhe. Fault diagnosis method of bearing utilizing GLCM and MBASA-based KELM[J]. Scientific Reports, 2022, 12(1): 17368.
[17] XUE Jiankai, SHEN Bo. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science & Control Engineering, 2020, 8:22-34.
[18] 孙大洪, 王发展, 刘强, 等. 基于BP和RBF神经网络的滚动轴承故障诊断比较[J]. 轴承, 2010(2): 53-56. SUN Dahong, WANG Fazhan, LIU Qiang, et al. Comparison of rolling bearing fault diagnosis based on BP and RBF neural network[J]. Bearing, 2010(2): 53-56.
[19] 江志农,张进杰,马波,等. 往复式压缩机故障监测与诊断技术[M]. 北京:科学出版社,2018.
[20] 张育凡. 基于蚱蜢优化和最小二乘支持向量机的电力负荷预测研究[D]. 兰州:兰州大学, 2018. ZHANG Yufan. Research on power load forecasting based on grasshopper optimization and least squares support vector machine[D]. Lanzhou: Lanzhou Univer-sity, 2018.
[21] 刘志雄,梁华. 粒子群算法中随机数参数的设置与实验分析[J].控制理论与应用, 2010, 27(11): 1489-1496. LIU Zhixiong, LIANG Hua. Setting and experimental analysis of random number parameters in particle swarm optimization[J]. Control Theory and Application, 2010, 27(11): 1489-1496.
[1] 闵海根,方煜坤,吴霞,王武祺. 网联交通环境下的车-车通信故障诊断方法[J]. 山东大学学报 (工学版), 2021, 51(6): 84-92.
[2] 王一宾,李田力,程玉胜,钱坤. 基于核极限学习机自编码器的标记分布学习[J]. 山东大学学报 (工学版), 2020, 50(3): 58-65.
[3] 汪嘉晨, 唐向红, 陆见光. 轴承故障诊断中特征选取技术[J]. 山东大学学报 (工学版), 2019, 49(2): 80-87.
[4] 程鑫,张林,胡业发,陈强,梁典. 基于电流特性的主动磁轴承电磁线圈故障诊断[J]. 山东大学学报(工学版), 2018, 48(4): 94-101.
[5] 程鑫,刘晗,王博,梁典,陈强. 基于双核处理器的主动磁悬浮轴承容错控制架构[J]. 山东大学学报(工学版), 2018, 48(2): 72-80.
[6] 刘卓,王天真,汤天浩,冯页帆,姚君琦,高迪驹. 一种多电平逆变器故障诊断与容错控制策略[J]. 山东大学学报(工学版), 2017, 47(5): 229-237.
[7] 孙源呈,姚利娜. 不确定奇异随机分布系统的故障诊断和容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 238-245.
[8] 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214.
[9] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[10] 王梦园,张雄,马亮,彭开香. 基于因果拓扑图的工业过程故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 187-194.
[11] 毛海杰,李炜,王可宏,冯小林. 基于自抗扰的多电机转速同步系统传感器故障切换容错策略[J]. 山东大学学报(工学版), 2017, 47(5): 64-70.
[12] 宋洋,钟麦英. 基于改进距离相似度的故障可分离性分析方法[J]. 山东大学学报(工学版), 2017, 47(5): 103-109.
[13] 崔阳,张柯,姜斌. 具有切换拓扑结构的多智能体系统故障估计[J]. 山东大学学报(工学版), 2017, 47(5): 263-270.
[14] 李明虎,李钢,钟麦英. 动态核主元分析在无人机故障诊断中的应用[J]. 山东大学学报(工学版), 2017, 47(5): 215-222.
[15] 王秀青,曾慧,解飞,吕峰. 基于Spiking神经网络的机械臂故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!