您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2023, Vol. 53 ›› Issue (4): 157-162.doi: 10.6040/j.issn.1672-3961.0.2022.311

• 其他 • 上一篇    

基于多机器人编队控制的大件物品协同搬运

张海森,张煌,王常顺*   

  1. 山东交通学院信息科学与电气工程学院, 山东 济南 250357
  • 发布日期:2023-08-18
  • 作者简介:张海森(1997— ),男,山东枣庄人,硕士研究生,主要研究方向为多智能体控制与移动机器人控制. E-mail:hai1215217002@163.com. *通信作者简介:王常顺(1984— ),男,山东高密人,副教授,博士,主要研究方向为多智能体控制与移动机器人控制. E-mail:jnwangchs@163.com
  • 基金资助:
    国家自然科学基金资助项目(61803230);山东省重点研发计划资助项目(2020CXGC010110);山东省自然科学基金资助项目(ZR2022MF345)

Collaborative transportation for bulky items based on multi-robot formation control

ZHANG Haisen, ZHANG Huang, WANG Changshun*   

  1. School of Information Science and Electric Engineering, Shangdong Jiaotong University, Jinan 250357, Shandong, China
  • Published:2023-08-18

摘要: 针对多移动机器人的协同搬运控制问题,基于领航-跟随者策略设计多移动机器人编队控制器。利用编队参数和领航者位置信息将编队控制转换为跟随者对虚拟机器人轨迹跟踪,实现编队的队形控制;利用反演法设计运动控制器,实现移动机器人轨迹跟踪控制;利用Lyapunov函数分析闭环系统的稳定性。仿真结果表明,编队中的移动机器人能够快速形成和保持给定的编队队形,并沿期望轨迹移动,实现了大件物品的协同搬运。

关键词: 多移动机器人, 领航-跟随者, 反演法, 闭环系统, 协同搬运

中图分类号: 

  • U698.6
[1] 周风余, 李贻斌, 宋锐, 等. 基于混合式多智能体系统的协作多机器人系统研究[J]. 山东大学学报(工学版), 2005, 35(1): 82-87. ZHOU Fengyu, LI Yibin, SONG Rui, et al. Research on cooperative multi-robot system based on hybrid multi-agent system[J]. Journal of Shandong University(Engineering Science), 2005, 35(1): 82-87.
[2] WANG C, WANG D, PENG Z. Distributed output-feedback control of unmanned container transporter platooning with uncertainties and disturbances using event-triggered mechanism[J]. IEEE Transactions on Vehicular Technology, 2021, 71(1): 162-170.
[3] 王常顺, 王丹, 彭周华. 单路径导引的车式移动机器人协同编队控制[J]. 控制理论与应用, 2021, 38(7): 1124-1132. WANG Changshun, WANG Dan, PENG Zhouhua. Coordinated formation control of car-like mobile robots guided by parameterized single path[J]. Control Theory & Applications, 2021, 38(7): 1124-1132.
[4] 李文振. 移动机器人编队运动研究[D].西安: 长安大学, 2021. LI Wenzhen. Research on formation motion of mobile robots[D]. Xi'an: Chang'an University, 2021.
[5] LIU A, ZHANG W A, YU L, et al. Formation control of multiple mobile robots incorporating an extended state observer and distributed model predictive approach[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 50(11): 4587-4597.
[6] 李海婷,张鹏超,任肖辉,等. 基于改进直接模糊自适应反馈控制的多移动机器人编队算法[J]. 制造业自动化, 2021, 43(3): 4-8. LI Haiting, ZHANG Pengchao, REN Xiaohui, et al. Formation control algorithm of multiple mobile robots based on improved direct fuzzy adaptive feedback control[J]. Manufacturing Automation, 2021, 43(3):4-8.
[7] WANG Z X, LIU T F, JIANG Z P. Cooperative formation control under switching topology: an experimental case study in multirotors[J]. IEEE Transactions on Cybernetics, 2021, 51(12): 6141-6153.
[8] LIU T, JIANG Z P. Distributed formation control of nonholonomic mobile robots without global position measurements[J]. Automatica, 2013, 49(2): 592-600.
[9] 王青伟. 基于预定性能的多移动机器人编队控制[D]. 天津: 天津工业大学, 2021. WANG Qingwei. Formaiton control of multiple mobile robots with prescribed performance[D]. Tianjin: Tiangong University, 2021.
[10] GU N, PENG Z H, WANG D, et al. Path-guided containment maneuvering of mobile robots: theory and experiments[J]. IEEE Transactions on Industrial Electronics, 2021, 68(8): 7178-7187.
[11] YU X, LIU L. Distributed formation control of nonholonomic vehicles subject to velocity constraints[J]. IEEE Transactions on Industrial Electronics, 2015, 63(2): 1289-1298.
[12] WANG B F, LI S, GUO J, et al. Car-like mobile robot path planning in rough terrain using multi-objective particle swarm optimization algorithm[J]. Neurocomputing, 2018, 282: 42-51.
[13] LAWTON J R T, BEARD R W, YOUNG B J. A decentralized approach to formation maneuvers[J]. IEEE Transactions on Robotics and Automation, 2003, 19(6): 933-941.
[14] REN W, SORENSEN N. Distributed coordination architecture for multi-robot formation control[J]. Robotics and Autonomous Systems, 2008, 56(4): 324-333.
[15] WANG Q, WANG Y, ZHANG H. The formation control of multi-agent systems on a circle[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 5(1): 148-154.
[16] CONSOLINI L, MORBIDI F, PRATTICHIZZO D, et al. Leader-follower formation control of nonholonomic mobile robots with input constraints[J]. Automatica, 2008, 44(5): 1343-1349.
[17] 刘安东, 秦冬冬. 基于虚拟结构法的多移动机器人分布式预测控制[J]. 控制与决策, 2021, 36(5): 1273-1280. LIU Andong, QIN Dongdong. Distributed predictive control of multiple mobile robots based on virtual structure method[J]. Control and Decision, 2021, 36(5): 1273-1280.
[18] YU X, LIU L, FENG G. Distributed circular formation control of nonholonomic vehicles without direct distance measurements[J]. IEEE Transactions on Automatic Control, 2018, 63(8): 2730-2737.
[19] LIU L, WANG D, PENG Z H, et al. Saturated coordinated control of multiple underactuated unmanned surface vehicles over a closed curve[J]. Science in China Series F: Information Sciences, 2017, 60: 070203.
[20] NAIR R R, KARKI H, SHUKLA A, et al. Fault-tolerant formation control of nonholonomic robots using fast adaptive gain nonsingular terminal sliding mode control[J]. IEEE Systems Journal, 2018, 13(1): 1006-1017.
[21] LI Z J, YUAN W, CHEN Y, et al. Neural-dynamic optimization-based model predictive control for tracking and formation of nonholonomic multirobot systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 6113-6122.
[1] 朱向前,魏峥嵘,裴彦良,于凯本,宗乐. 深拖地震线列阵的动力学建模与位置预报[J]. 山东大学学报 (工学版), 2020, 50(6): 9-16.
[2] 刘洋. 乘性故障对开闭环系统故障诊断性能的影响[J]. 山东大学学报(工学版), 2017, 47(5): 38-43.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!