山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (4): 83-88.doi: 10.6040/j.issn.1672-3961.0.2021.295
• • 上一篇
孟令灿,聂秀山*,张雪
MENG Lingcan, NIE Xiushan*, ZHANG Xue
摘要: 由于公交车中场景复杂、干扰因素繁多容易出现遮挡乘客问题,现有深度学习和目标检测方法在对公交车内的拥挤程度分类时精度低、效果差,往往达不到令人满意的效果。针对这一问题,提出一种基于遮挡目标去除的公交车拥挤度分类算法,对公交拥挤进行分类和分析。该方法有遮挡物检测、图像去遮挡和拥挤度分类模块三部分组成。基于目标检测算法检测出遮挡物,通过图像修复算法对乘客图像进行修复,利用拥挤度分类算法分析拥挤度。本研究从真实的公交车中采集数据生成数据集,并进行标注。试验结果表明,基于遮挡目标去除的分类算法的准确率达到了67.12%,与现有的方法对比具有最高的预测精度。
中图分类号:
[1] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(6): 1137-1149. [2] HE K, GKIOXARI G, DOLLÁR P, et al. Mask r-cnn[C] //Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 2961-2969. [3] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 779-788 [4] WANG X, SHRIVASTAVA A, GUPTA A. A-fast-rcnn: hard positive generation via adversary for object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 2606-2615. [5] LI J, LIANG X, WEI Y, et al. Perceptual generative adversarial networks for small object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 1222-1230. [6] BALLESTER C, BERTALMIO M, CASELLES V, et al. Filling-in by joint interpolation of vector fields and gray levels[J]. IEEE Transactions on Image Processing, 2001, 10(8): 1200-1211. [7] BERTALMIO M, VESE L, SAPIRO G, et al. Simultaneous structure and texture image inpainting[J]. IEEE Transactions on Image Processing, 2003, 12(8): 882-889. [8] CRIMINISI A, PÉREZ P, TOYAMA K. Region filling and object removal by exemplar-based image inpainting[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1200-1212. [9] DOLHANSKY B, FERRER C C. Eye in-painting with exemplar generative adversarial networks[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 7902-7911. [10] ZHANG H, HU Z, LUO C, et al. Semantic image inpainting with progressive generative networks[C] //Proceedings of the 26th ACM International Conference on Multimedia. Seoul, Korea: ACM, 2018: 1939-1947. [11] LI Y, LIU S, YANG J, et al. Generative face completion[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 3911-3919. [12] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft coco: common objects in context[C] //Proceedings of the European Conference on Computer Vision(ECCV). Zurich, Switzerland: Springer, 2014: 740-755. [13] LIN T, DOLLÁR P, GIRSHICK R B, et al. Feature pyramid networks for object detection[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017:936-944. [14] YU J, LIN Z, YANG J, et al. Generative image inpainting with contextual attention[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018:5505-5514. [15] ZHOU B, LAPEDRIZA A, KHOSLA A, et al. Places: a 10 million image database for scene recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(6): 1452-1464. [16] CHU X, ZHENG A, ZHANG X, et al. Detection in crowded scenes: one proposal, multiple predictions[C] //Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle, USA: IEEE, 2020: 12214-12223. [17] SCHULDT C, LAPTEV I, CAPUTO B. Recognizing human actions: a local SVM approach[C] //Proceedings of the 17th International Conference on Pattern Recognition. Cambridge, UK: IEEE, 2004: 32-36. [18] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770-778. [19] MA Z, WEI X, HONG X, et al. Bayesian loss for crowd count estimation with point supervision[C] //Proceedings of the IEEE/CVF International Conference on Computer Vision. Seoul, Korea: IEEE, 2019: 6142-6151. [20] IDREES H, TAYYAB M, ATHREY K, et al. Composition loss for counting, density map estimation and localization in dense crowds[C] //Proceedings of the European Conference on Computer Vision(ECCV). Munich, Germany: Springer, 2018: 532-546. |
[1] | 杨霄,袭肖明,李维翠,杨璐. 基于层次化双重注意力网络的乳腺多模态图像分类[J]. 山东大学学报 (工学版), 2022, 52(3): 34-41. |
[2] | 王心哲,邓棋文,王际潮,范剑超. 深度语义分割MRF模型的海洋筏式养殖信息提取[J]. 山东大学学报 (工学版), 2022, 52(2): 89-98. |
[3] | 蒋桐雨,陈帆,和红杰. 基于非对称U型金字塔重建的轻量级人脸超分辨率网络[J]. 山东大学学报 (工学版), 2022, 52(1): 1-8, 18. |
[4] | 吴建清,宋修广. 同步定位与建图技术发展综述[J]. 山东大学学报 (工学版), 2021, 51(5): 16-31. |
[5] | 柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报 (工学版), 2021, 51(3): 76-83. |
[6] | 杨修远,彭韬,杨亮,林鸿飞. 基于知识蒸馏的自适应多领域情感分析[J]. 山东大学学报 (工学版), 2021, 51(3): 15-21. |
[7] | 廖锦萍,莫毓昌,YAN Ke. 基于C-LSTM的短期用电预测模型和应用[J]. 山东大学学报 (工学版), 2021, 51(2): 90-97. |
[8] | 刘帅,王磊,丁旭涛. 基于Bi-LSTM的脑电情绪识别[J]. 山东大学学报 (工学版), 2020, 50(4): 35-39. |
[9] | 蔡国永,贺歆灏,储阳阳. 基于空间注意力和卷积神经网络的视觉情感分析[J]. 山东大学学报 (工学版), 2020, 50(4): 8-13. |
[10] | 李春阳,李楠,冯涛,王朱贺,马靖凯. 基于深度学习的洗衣机异常音检测[J]. 山东大学学报 (工学版), 2020, 50(2): 108-117. |
[11] | 陈德蕾,王成,陈建伟,吴以茵. 基于门控循环单元与主动学习的协同过滤推荐算法[J]. 山东大学学报 (工学版), 2020, 50(1): 21-27,48. |
[12] | 张继,金翠,王洪元,陈首兵. 基于奇异值分解行人对齐网络的行人重识别[J]. 山东大学学报 (工学版), 2019, 49(5): 91-97. |
[13] | 万鹏. 基于F-PointNet的3D点云数据目标检测[J]. 山东大学学报 (工学版), 2019, 49(5): 98-104. |
[14] | 梁志祥,刘晓明,牟颖,刘玉田. 基于深度学习的新能源爬坡事件预测方法[J]. 山东大学学报 (工学版), 2019, 49(5): 24-28. |
[15] | 刘玉田, 孙润稼, 王洪涛, 顾雪平. 人工智能在电力系统恢复中的应用综述[J]. 山东大学学报 (工学版), 2019, 49(5): 1-8. |
|