山东大学学报 (工学版) ›› 2022, Vol. 52 ›› Issue (3): 1-8.doi: 10.6040/j.issn.1672-3961.0.2021.314
• 机器学习与数据挖掘 • 下一篇
摘要:
针对识别学习中的多维信息融合问题, 提出一种基于多元函数主成分表示识别方法。给出多元函数主成分的数值计算方法, 利用联合协方差算子计算特征值与特征向量, 提取关键区分特征。基于这些综合特征应用随机森林方法对多元函数型数据进行识别学习。在模拟数据和真实数据上比较多元函数主成分表示方法与其他几种表示方法的识别性能。试验结果表明, 在模拟数据集、英文手写体数据集和中文手写体数据集中, 准确率为1, 在运动数据集中, 准确率为0.954 4。相较于其他方法, 多元函数主成分分析这一特征抽取方法的识别效果更好, 有效地提高了识别准确率。
中图分类号:
1 |
RAMSAY J O . When the data are functions[J]. Psychometrika, 1982, 47 (4): 379- 396.
doi: 10.1007/BF02293704 |
2 |
BESSE P , RAMSAY J O . Principal components analysis of sampled functions[J]. Psychometrika, 1986, 51 (2): 285- 311.
doi: 10.1007/BF02293986 |
3 | RAMSAY J O . A functional approach to modeling test data[M]. New York, USA: Springer, 1997: 381- 394. |
4 | BOENTE G , FRAIMAN R . Kernel-based functional principal components[J]. Statistics & Probability Letters, 2000, 48 (4): 335- 345. |
5 |
CARDOT H . Conditional functional principal components analysis[J]. Scandinavian Journal of Statistics, 2007, 34 (2): 317- 335.
doi: 10.1111/j.1467-9469.2006.00521.x |
6 |
BOENTE G , SALIBIAN-BARRERA M . S-Estimators for functional principal component analysis[J]. Journal of the American Statistical Association, 2015, 110 (511): 1100- 1111.
doi: 10.1080/01621459.2014.946991 |
7 |
ANEIROS-PÉREZ G , VIEU P . Testing linearity in sem-iparametric functional data analysis[J]. Computational Statistics, 2013, 28 (2): 413- 434.
doi: 10.1007/s00180-012-0308-2 |
8 |
ROSSI F , VILLA N . Support vector machine for functional data classification[J]. Neurocomputing, 2006, 69 (7-9): 730- 742.
doi: 10.1016/j.neucom.2005.12.010 |
9 | FERRATY F , GONZÁLEZ-MANTEIGA W , MARTÍNEZ-CALVO A , et al. Presmoothing in functional linear regression[J]. Statistica Sinica, 2012, 22 (1): 69- 94. |
10 | RACHDI M , VIEU P . Nonparametric regression for functional data: automatic smoothing parameter selection[J]. Journal of Statistical Planning & Inference, 2007, 137 (9): 2784- 2801. |
11 |
CHAMROUKHI F , GLOTIN H , SAMÉ A . Model-based functional mixture discriminant analysis with hidden process regression for curve classification[J]. Neuroc-omputing, 2013, 112, 153- 163.
doi: 10.1016/j.neucom.2012.10.030 |
12 |
PENG Q Y , ZHOU J J , TANG N S . Varying coefficient partially functional linear regression models[J]. Sta-tistical Papers, 2016, 57 (3): 827- 841.
doi: 10.1007/s00362-015-0681-3 |
13 |
JAMES G M , SUGAR C A . Clustering for sparsely sampled functional data[J]. Publications of the American Statistical Association, 2003, 98 (462): 397- 408.
doi: 10.1198/016214503000189 |
14 | PENG J , MVLLER H G . Distance-based clustering of sparsely observed stochastic processes, with applications to online auctions[J]. Annals of Applied Statistics, 2008, 2 (3): 1056- 1077. |
15 |
JACQUES J , PREDA C . Funclust: a curves clustering method using functional random variables density approximation[J]. Neurocomputing, 2013, 112, 164- 171.
doi: 10.1016/j.neucom.2012.11.042 |
16 |
DELAIGLE A , HALL P . Achieving near perfect classification for functional data[J]. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 2012, 74 (2): 267- 286.
doi: 10.1111/j.1467-9868.2011.01003.x |
17 |
MOSLER K , MOZHAROVSKYI P . Fast DD-classifi-cation of functional data[J]. Statistical Papers, 2017, 58 (4): 1055- 1089.
doi: 10.1007/s00362-015-0738-3 |
18 |
GÓRECKI T , KRZYŚKO M , RATAJCZAK W , et al. An extension of the classical distance correlation coefficient for multivariate functional data with applications[J]. Statistics in Transition New Series, 2016, 17 (3): 449- 466.
doi: 10.21307/stattrans-2016-032 |
19 | BERRENDERO J R , JUSTEL A , SVARC M . Principal components for multivariate functional data[J]. Comp-utational Statistics & Data Analysis, 2011, 55 (9): 2619- 2634. |
20 | CHIOU J M , CHEN Y T , YANG Y F . Multivariate functional principal component analysis: a normalization approach[J]. Statistica Sinica, 2014, 24, 1571- 1596. |
21 |
HAPP C , GREVEN S . Multivariate functional principal component analysis for data observed on different (dimensional) domains[J]. Journal of the American Statistical Association, 2018, 113 (522): 649- 659.
doi: 10.1080/01621459.2016.1273115 |
22 | 尹雪婷. 多元函数型数据四元数并行特征提取方法研究[D]. 秦皇岛: 燕山大学电器工程学院, 2017. |
YIN Xueting. A research on quaternion parallel feature extraction of multivariate functional data[D]. Qin-huangdao: School of Electrical Engineering, Yanshan University, 2017. | |
23 |
GÓRECKI T , KRZYŚKO M , WASZAK Ƚ , et al. Selected statistical methods of data analysis for multivariate functional data[J]. Statistical Papers, 2018, 59 (1): 153- 182.
doi: 10.1007/s00362-016-0757-8 |
24 |
HANUSZ Z , KRZYŚKO M , NADULSKI R , et al. Discriminant coordinates analysis for multivariate fun-ctional data[J]. Communications in Statistics-Theory and Methods, 2020, 49 (18): 4506- 4519.
doi: 10.1080/03610926.2019.1602650 |
25 |
VIRTA J , LI B , NORDHAUSEN K , et al. Independent component analysis for multivariate functional data[J]. Journal of Multivariate Analysis, 2020, 176, 104568.
doi: 10.1016/j.jmva.2019.104568 |
26 |
GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Class-ification problems based on regression models for multi-dimensional functional data[J]. Statistics in Transition New Series, 2015, 16 (1): 97- 110.
doi: 10.21307/stattrans-2015-006 |
27 |
KRZYSKO M , SMAGA Ƚ . An application of functional multivariate regression model to multiclass classification[J]. Statistics in Transition New Series, 2017, 18 (3): 433- 442.
doi: 10.21307/stattrans-2016-079 |
28 | DAI W , GENTON M G . An outlyingness matrix for multivariate functional data classification[J]. Statistica Sinica, 2018, 28 (4): 2435- 2454. |
29 |
BLANQUERO R , CARRIZOSA E , JIMÉNEZ-CORDERO A , et al. Variable selection in classification for multi-variate functional data[J]. Information Sciences, 2019, 481, 445- 462.
doi: 10.1016/j.ins.2018.12.060 |
30 |
GÓRECKI T , KRZYŚKO M , WOȽYŃSKI W . Variable selection in multivariate functional data classification[J]. Statistics in Transition New Series, 2019, 20 (2): 123- 138.
doi: 10.21307/stattrans-2019-018 |
31 | RAMSAY J O , SILVERMAN B W . Functional data analysis[M]. Berlin, Germany: Springer, 2005. |
32 |
AGUILERA A M , AGUILERA-MORILLO M C . Penalized PCA approaches for B-spline expansions of smooth functional data[J]. Applied Mathematics and Computation, 2013, 219 (14): 7805- 7819.
doi: 10.1016/j.amc.2013.02.009 |
33 | MCCALL C, REDDY K, SHAH M. Macro-class selection for hierarchical k-NN classification of inertial sensor data[C]// Proceedings of the 2nd International Conference on Pervasive and Embedded Computing and Communication Systems. Setúbal, Portugal: SCITE-PRESS, 2012: 106-114. |
[1] | 孟银凤,杨佳宇,曹付元. 函数型数据的分裂转移式层次聚类算法[J]. 山东大学学报 (工学版), 2022, 52(1): 19-27. |
[2] | 刘新锋, 张旖旎,徐惠三,宋玲,陈梦雅. 基于随机森林和专家系统的分布式光伏电站阴影遮挡诊断[J]. 山东大学学报 (工学版), 2021, 51(2): 98-104. |
[3] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
[4] | 翟俊海,张素芳,胡文祥,王熙照. 核心集径向基函数极限学习机[J]. 山东大学学报(工学版), 2016, 46(2): 1-5. |
[5] | 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38. |
[6] | 房晓南1,2,张化祥1,2*,高爽1,2. 基于SMOTE和随机森林的Web spam检测[J]. 山东大学学报(工学版), 2013, 43(1): 22-27. |
|