您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报(工学版)

• 论文 • 上一篇    下一篇

基于遗传算法的小波神经网络交通流预测

李婧瑜1,李歧强2,侯海燕3,杨立才4   

  1. 山东大学控制科学与工程学院,山东 济南 250061
  • 收稿日期:2006-12-16 修回日期:1900-01-01 出版日期:2007-04-24 发布日期:2007-04-24
  • 通讯作者: 李婧瑜

Traffic flow prediction based on the wavelet neural network with genetic algorithm

LI Jing-yu1,LI Qi-qiang2,HOU Hai-yan3,YANG Li-cai4   

  1. School of Control Science and Engineering,Shandong University,Shandong Jinan 250061,China
  • Received:2006-12-16 Revised:1900-01-01 Online:2007-04-24 Published:2007-04-24
  • Contact: LI Jing-yu

摘要: 城市交通流的运行存在着高度的复杂性、时变性和随机性,实时准确的交通流预测是智能交通系统,特别是先进的交通管理系统与先进的出行者信息系统研究的关键. 基于交通流预测的特点,给出了基于遗传算法的小波神经网络的交通预测模型GAWNN,用具有自然进化规律的遗传算法来对小波神经网络的连接权值和伸缩平移尺度进行前期优化训练,部分代替了小波框架神经网络中按单一梯度方向进行参数优化的梯度下降法,克服了单一梯度下降法易陷入局部极小和引起振荡效应等缺陷. 仿真实验验证了GAWNN预测模型对短时交通流的预测的有效性.

关键词: 遗传算法, 小波神经网络, 交通流预测

Abstract: For the highcomplexity, timevariation and probability of urban traffic flow, its realtime and exact prediction is critical to the research of intelligent traffic system, especially for the advanced traffic management system and advanced traveler information system. Based on the character of the traffic flow prediction, a GAWNN model is given based on the wavelet neural network with genetic algorithm. The genetic algorithm of natural evolving law for the gradient descendent algorithm in Wavelet Neural Network is partly substituted to preoptimize the connection weight and the extension scale of the wavelet neural network, and later optimize the parameters along single gradient vector. This method overcomes some drawback when there exists single gradient descendent algorithm, such as local minimum and oscillation. A shorttime traffic flow prediction simulation using the GAWNN prediction model demonstrates the validity of the model.

Key words: wavelet neural network, traffic flow prediction , genetic algorithm

中图分类号: 

  • TP391
[1] 陈嘉杰,王金凤. 基于蚁群算法求解Choquet模糊积分模型[J]. 山东大学学报(工学版), 2018, 48(3): 81-87.
[2] 王飞,徐健,李伟,汪新浩,施啸寒. 基于分布式储能系统的风储滚动优化调度方法[J]. 山东大学学报(工学版), 2017, 47(6): 89-94.
[3] 吴建萍,姜斌,刘剑慰. 基于小波包信息熵和小波神经网络的异步电机故障诊断[J]. 山东大学学报(工学版), 2017, 47(5): 223-228.
[4] 王常顺,肖海荣. 基于自抗扰控制的水面无人艇路径跟踪控制器[J]. 山东大学学报(工学版), 2016, 46(4): 54-59.
[5] 刘德宝, 吴耀华, 郭耀阳, 王艳艳. 基于串并行混合拣选策略的自动拣选系统品项分配优化[J]. 山东大学学报(工学版), 2015, 45(6): 36-44.
[6] 董红斌, 张广江, 逄锦伟, 韩启龙. 一种基于协同进化方法的聚类集成算法[J]. 山东大学学报(工学版), 2015, 45(2): 1-9.
[7] 梁兴建, 詹志辉. 基于双模式变异策略的改进遗传算法[J]. 山东大学学报(工学版), 2014, 44(6): 1-7.
[8] 李翔1,朱全银1,王尊2. 基于可变基函数和GentleAdaBoost的小波神经网络研究[J]. 山东大学学报(工学版), 2013, 43(5): 31-38.
[9] 孙鹏,程世庆*,谢敬思,张海瑞. 预测混合生物质灰熔点的CV-GA-SVM模型[J]. 山东大学学报(工学版), 2012, 42(2): 108-111.
[10] 朱跃龙,李士进,范青松,万定生. 基于小波神经网络的水文时间序列预测[J]. 山东大学学报(工学版), 2011, 41(4): 119-124.
[11] 杨钦民,刘海林*. 基于遗传算法的蜂窝网络动态信道分配建模及算法实现[J]. 山东大学学报(工学版), 2011, 41(2): 85-90.
[12] 刘彬,张仁津. 基于退火遗传算法的NURBS曲线逼近[J]. 山东大学学报(工学版), 2010, 40(5): 96-100.
[13] 阳爱民1,周咏梅1,邓河2,周剑峰3. 一种网络流量分类特征的产生及选择方法[J]. 山东大学学报(工学版), 2010, 40(5): 1-7.
[14] 王艳艳,吴耀华,孙国华,于洪鹏. 配送中心分拣订单合批策略的研究[J]. 山东大学学报(工学版), 2010, 40(2): 43-46.
[15] 杜乾蔚 何彬 王玉玲 游智.
基于遗传算法的含金属混合炸药配方设计
[J]. 山东大学学报(工学版), 2009, 39(5): 149-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!