山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 65-73.doi: 10.6040/j.issn.1672-3961.0.2020.182
• • 上一篇
解子奇,王立宏*,李嫚
XIE Ziqi, WANG Lihong*, LI Man
摘要: 针对块对角表示(block diagonal representation, BDR)子空间聚类算法在对子空间重叠的高维数据聚类时效果较差的问题,提出成对约束的块对角子空间聚类(constrained subspace clustering with block diagonal representation, CBDR)算法,设计主动式学习策略,获取用户提供的少量数据点成对信息,以改进BDR算法的性能,给出CBDR算法的目标函数和求解过程。在测试集上的试验结果表明,CBDR算法的聚类错误率和归一化互信息指标比BDR和SBDR(structured block diagonal representation)算法好,而且主动式选取点对方法优于随机选取点对方法,使用少于5‰的约束信息可降低BDR的聚类错误率达到5%以上。
中图分类号:
[1] ELHAMIFAR E, VIDAL R. Sparse subspace clustering: algorithm, theory, and applications[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 35(11):2765-2781. [2] LIU G, LIN Z, YAN S, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2013, 35(1):171-184. [3] LU C, FENG J, LIN Z, et al. Subspace clustering by block diagonal representation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2019, 41(2):487-501. [4] YANG Y, ZHANG X. Subspace clustering algorithm based on Laplacian rank constraint[C] //Proceedings of 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference. Chengdu, China: IEEE, 2019:1556-1559. [5] VIDAL R, MA Y, SASTRY S. Generalized principal component analysis[M]. New York, USA: Springer, 2016. [6] WANG L, HUANG J, YI M, et al. Block diagonal representation learning for robust subspace clustering[J]. Information Sciences, 2020, 526:54-67. [7] ZHANG Zhao, REN Jiahuan, LI Sheng, et al. Robust subspace discovery by block-diagonal adaptive locality-constrained representation[C] //Proceedings of ACM International Conference on Multimedia(MM'19). Nice, France: ACM, 2019. [8] 郑建炜, 李卓蓉, 王万良, 等. 联合Laplacian正则项和特征自适应的数据聚类算法[J]. 软件学报, 2019, 30(12):3846-3861. ZHENG Jianwei, LI Zhuorong, WANG Wanliang, et al. Clustering with joint Laplacian regularization and adaptive feature learning[J]. Journal of Software, 2019, 30(12):3846-3861. [9] HE R, ZHANG Y, SUN Z, et al. Robust subspace clustering with complex noise[J]. IEEE Transactions on Image Processing, 2015, 24(11):4001-4013. [10] 鲁全茂. 面向高维数据的聚类算法研究[D]. 北京:中国科学院大学, 2018. LU Quanmao. Research on clustering algorithms for high-dimensional data[D]. Beijing:University of Chinese Academy of Sciences, 2018. [11] ABDOLALI M, RAHMATI M. Neither global nor local: a hierarchical robust subspace clustering for image data[J]. Information Sciences, 2020, 514:333-353. [12] LIU Maoshan, WANG Yan, SUN Jun, et al. Structured block diagonal representation for subspace clustering[J]. Applied Intelligence, 2020. [13] ZHANG Zhao, ZHANG Yan, LIU Guangcan, et al. Joint label prediction based semi-supervised adaptive concept factorization for robust data representation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(5):952-970. [14] YIN M, XIE S, WU Z, et al. Subspace clustering via learning an adaptive low-rank graph[J]. IEEE Transactions on Image Processing, 2018, 27(8):3716-3728. [15] WANG Weiwei, YANG Chunyu, CHEN Huazhu, et al. Unified discriminative and coherent semi-supervised subspace clustering[J]. IEEE Transactions on Image Processing, 2018, 27(5):2461-2470. [16] LIU Y, LIU K, ZHANG C, et al. Entropy-based active sparse subspace clustering[J]. Multimedia Tools and Applications, 2018, 77:22281-22297. [17] WANG J, WANG X, TIAN F, et al. Constrained low-rank representation for robust subspace clustering[J]. IEEE Transactions on Cybernetics, 2017, 47(12):4534-4546. [18] WAGSTAFF K, CARDIE C, ROGERS S, et al. Constrained k-means clustering with background knowledge[C] //Proceedings of the Eighteenth International Conference on Machine Learning. MA, USA: Morgan Kaufmann Publishers Inc, 2001:577-584. [19] LUXBURG U V. A tutorial on spectral clustering[J]. Statistics & Computing, 2007, 17(4):395-416. [20] NIE F, WANG H, CAI X, et al. Robust matrix completion via joint schatten p-norm and lp-norm minimization[C] //Proceedings of IEEE International Conference on Data Mining Series. Brussels, Belgium: IEEE, 2012:566-574. |
[1] | 丁彦,李永忠*. 基于PCA和半监督聚类的入侵检测算法研究[J]. 山东大学学报(工学版), 2012, 42(5): 41-46. |
[2] | 张友新,王立宏. 两阶段近邻传播半监督聚类算法[J]. 山东大学学报(工学版), 2012, 42(2): 18-22. |
[3] | 张道强. 知识保持的嵌入方法[J]. 山东大学学报(工学版), 2010, 40(2): 1-10. |
|