山东大学学报 (工学版) ›› 2021, Vol. 51 ›› Issue (2): 57-64.doi: 10.6040/j.issn.1672-3961.0.2020.231
• • 上一篇
林晓炜1,2,陈黎飞1,2*
LIN Xiaowei1,2, CHEN Lifei1,2*
摘要: 提出结构扩展的非负矩阵分解社区发现算法(nonnegative matrix factorization with structure extension, NMF-SE),通过结构扩展,加强相邻节点结构相似性,提高节点间连接的稠密度,从而提高非负矩阵分解在社区发现中的表现。结构扩展过程使节点将自身结构以一定的比例传递给周围的节点,从而使相邻节点间能够得到对方的拓扑结构信息。该过程构造了新的特征矩阵,使非负矩阵分解(nonnegative matrix factorization, NMF)更好地适用于社区发现,在图正则化的半监督任务中能更好地融合先验信息。在人工网络和真实网络上进行试验验证的结果表明,NMF-SE算法有效提高了复杂网络社区发现的准确性。
中图分类号:
[1] GIRVAN M, NEWMAN M E J. Community structure in social and biological networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826. [2] NEWMAN M E J. The structure and function of complex networks[J]. SIAM Review, 2003, 45(2):167-256. [3] GLIGORIJEVIC V, PANAGAKIS Y, ZAFEIRIOU S P. Non-negative matrix factorizations for multiplex network analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 928-940. [4] NEWMAN M E J, GIRVAN M. Finding and evaluatingcommunity structure in networks[J]. Phys Rev E, 2004, 69(2): 026113. [5] BLONDEL V D, GUILLAUME J L, LAMBIOTTE R, et al. Fast unfolding of communities in large networks[J]. J Stat Mech-Theory E, 2008, 2008(10): 10008. [6] SHI Jianbo, JITENDRA Malik. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8):888-905. [7] RAGHAVAN U N, ALBERT R, KUMARA S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 2007, 76(3): 036106. [8] LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791. [9] LI Yafan, JIA Caiyan, YU Jian. Survey on community detection algorithms using nonnegative matrix factorization model[J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(1): 1-13. [10] ZHANG Shihua, WANG Ruisheng, ZHANG Xiangsun. Uncovering fuzzy community structure in complex networks[J]. Physical Review E: Statistical Nonlinear and Soft Matter Physics, 2007, 76(4): 046103. [11] WANG Fei, LI Tao, WANG Xin, et al. Community discovery using nonnegative matrix factorization[J]. Data Mining and Knowledge Discovery, 2011, 22(3): 493-521. [12] MA Xiaoke, GAO Lin, YONG Xuerong, et al. Semi-supervised clustering algorithm for community structure detection in complex networks[J]. Physica A: Statistical Mechanics and Its Applications, 2010, 389(1): 187-197. [13] YANG Liang, CAO Xiaochun, JIN Di, et al. A unified semi-supervised community detection framework using latent space graph regularization[J]. IEEE Transactions on Cybernetics, 2015, 45(11): 2585-2598. [14] CAI Deng, HE Xiaofei, HAN Jiawei, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 33(8): 1548-1560. [15] MA Xiaoke, SUN Penggang, WANG Yu. Graph regularized nonnegative matrix factorization for temporal link prediction in dynamic networks[J]. Physica A: Statis-tical Mechanics and Its Applications, 2018, 496: 121-136. [16] PEI Yulong, CHAKRABORTY N, SYCARA K P. Nonnegative matrix tri-factorization with graph regulari-zation for community detection in social networks[C] //Proceedings of the International Conference on Artificial Intell-igence. California, USA: AAAI Press, 2015:2083-2089. [17] LAFFERTY J, RISI I K. Kernels on graphs and other discrete input spaces[C] //Proceedings of the International Conference on Machine Learning. San Francisco, USA: Margan Kaufmann Press, 2002:315-322. [18] CAI Deng, HE Xiaofei, WU Xiaoyun, et al. Non-negative matrix factorization on manifold[C] //Proceedings of the International Conference on Data Mining.New York, USA: IEEE Press, 2008:63-72. [19] LIU Xiao, WANG Wenjun, HE Dongxiao, et al. Semi-supervised community detection based on non-negative matrix factorization with node popularity[J]. Information Sciences, 2017, 381:304-321. [20] LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C] //Proceedings of the Neural Information Processing Systems. Massachusetts, USA: MIT Press, 2001, 13:556-562. [21] WANG Dingding, LI Tao, ZHU Shenghuo, et al. Multi-document summarization via sentence-level semantic analysis and symmetric matrix factorization[C] //Proceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM Press, 2008:307-314. [22] LANCICHINETTI A, FORTUNATO S, RADICCHI F. Benchmark graphs for testing community detection algorithms[J]. Physical Review E Statistical Nonlinear and Soft Matter Physics, 2008, 78(4): 046110. [23] NEWMAN M E J. Modularity andcommunity structure in networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(23): 8577-8582. [24] FORTUNATO S, BARTHELEMY M. Resolution limit in community detection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(1): 36-41. [25] DANON L, DIAZ-GUILERA A, DUCH J, et al. Comparing community structure identification[J]. Journal of Statistical Mechanics: Theory and Experiment, 2005(9): P09008. |
[1] | 黄成凯,杨浩,姜斌,程舒瑶. 一类复杂网络的协同容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 203-209. |
[2] | 张玉婷,李望,王晨光,刘友权,侍红军. 不连续耦合的时滞复杂动态网络的同步[J]. 山东大学学报(工学版), 2017, 47(4): 43-49. |
[3] | 李望,马志才,侍红军. 时滞复杂动态网络的有限时间随机广义外部同步[J]. 山东大学学报(工学版), 2017, 47(3): 1-8. |
[4] | 郝崇清,王志宏. 基于复杂网络的癫痫脑电分类与分析[J]. 山东大学学报(工学版), 2017, 47(3): 8-15. |
[5] | 王鑫,陆静雅,王英. 面向推荐的用户兴趣扩展方法[J]. 山东大学学报(工学版), 2017, 47(2): 71-79. |
[6] | 吕振,李苏雪,张传亭,袁东风. 一种基于结构信息的改进CNM算法[J]. 山东大学学报(工学版), 2017, 47(1): 37-41. |
[7] | 褚晓东,张荣祥,黄昊怡,唐茂森. 全球能源互联网物理-信息系统协同仿真平台[J]. 山东大学学报(工学版), 2016, 46(4): 103-110. |
[8] | 李新玉, 徐桂云,任世锦,杨茂云. 基于鉴别流形的不相关稀疏投影非负矩阵分解[J]. 山东大学学报 (工学版), 2015, 45(5): 1-12. |
[9] | 李望1,2,石咏2,马继伟2. 复杂动力学网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2): 48-53. |
[10] | 赵永清, 江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版), 2010, 40(3): 61-68. |
|