您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 82-87.doi: 10.6040/j.issn.1672-3961.0.2019.622

• 土木工程 • 上一篇    下一篇

高地应力下砂岩力学参数和波速变化规律试验研究

宫嘉辰1(),陈士海1,2,*()   

  1. 1. 华侨大学土木工程学院,福建 厦门 361021
    2. 福建省隧道与城市地下空间工程技术研究中心, 福建 厦门 361021
  • 收稿日期:2019-10-17 出版日期:2020-06-20 发布日期:2020-06-16
  • 通讯作者: 陈士海 E-mail:836408502@qq.com;cshblast@163.com
  • 作者简介:宫嘉辰(1995—),男,山东烟台人,硕士研究生,主要研究方向为岩土工程方向研究.E-mail: 836408502@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51974136);华侨大学研究生科研创新基金资助项目(17014086007)

Experimental study on mechanical parameters and wave velocity variation of sandstone under high ground stress

Jiachen GONG1(),Shihai CHEN1,2,*()   

  1. 1. College of Civil Engineering, Huaqiao University, Xiamen 361021, Fujian, China
    2. Fujian Research Center for Tunneling and Urban Underground Space Engineering, Xiamen 361021, Fujian, China
  • Received:2019-10-17 Online:2020-06-20 Published:2020-06-16
  • Contact: Shihai CHEN E-mail:836408502@qq.com;cshblast@163.com
  • Supported by:
    国家自然科学基金资助项目(51974136);华侨大学研究生科研创新基金资助项目(17014086007)

摘要:

基于波动方程,提出一种砂岩的纵波波速与静水围压关系的数学模型。在岩石常规三轴试验的基础上得到不同静水围压下砂岩的静弹性模量、静泊松比和纵波波速,并分别拟合得到静弹性模量-静水围压和静泊松比-静水围压关系的拟合曲线和拟合公式。试验结果表明,砂岩的静弹性模量和静泊松比随静水围压的增大而增加,且静弹性模量增加速率缓慢减少。基于波动方程求解得到纵波波速-静水围压关系的数学模型,利用数学模型计算得到的纵波波速可知,砂岩的纵波波速随静水围压的增大而增大,且增加速率逐渐变缓。计算得到的纵波波速与试验测得的纵波波速进行对比验证,误差范围为7.0%~8.3%,故基于波动方程求解的砂岩纵波波速-静水围压关系的数学模型可靠性和准确性较高,对高地应力下岩石的物理力学参数和波速变化规律的分析判定具有指导意义。

关键词: 高地应力, 波动方程, 砂岩, 纵波波速, 静水围压, 静弹性模量, 静泊松比

Abstract:

A large number of studies showed that high ground stress had a certain influence on the wave velocity of deep buried rock, based on the wave equation, a mathematical model of the relationship between longitudinal wave velocity of sandstone and hydrostatic confining pressure was proposed. Based on the conventional triaxial test of rock, the static elastic modulus, static Poisson's ratio and longitudinal wave velocity of sandstone under different hydrostatic confining pressures were obtained, and the fitting curves and fitting formulas of static elastic modulus-hydrostatic confining pressure and static Poisson's ratio-hydrostatic confining pressure were obtained respectively. The test results showed that the static elastic modulus and static Poisson's ratio of sandstone increased with the increase of hydrostatic pressure, and the rate of increase of static elastic modulus decreased slowly. Based on the wave equation, the mathematical model of the longitudinal wave velocity-hydrostatic confining pressure was obtained, the longitudinal wave velocity calculated by the mathematical model showed that the longitudinal wave velocity of the sandstone increased with the increase of the hydrostatic pressure, and the increasing rate gradually became slower. The calculated longitudinal wave velocity was compared with the measured, the error range was 7.0%-8.3%. Therefore, the mathematical model of sandstone longitudinal wave velocity-hydrostatic confining pressure based on wave equation was reliable and accurate, it was of guiding significance to analyze and judge the physical and mechanical parameters of rock under high ground stress and the variation law of wave velocity.

Key words: high ground stress, wave equation, sandstone, longitudinal wave velocity, hydrostatic confining pressure, static elastic modulus, static Poisson′s ratio

中图分类号: 

  • TD23

图1

试样及设备安装示意图"

图2

砂岩单轴应力-应变曲线"

图3

不同围压下砂岩三轴应力-应变曲线"

表1

不同静水围压下砂岩的静弹性参数"

编组 围压/MPa 静弹性模量/GPa 静泊松比
1-1 6 21.82 0.013
1-2 8 22.64 0.028
1-3 10 23.43 0.046
1-4 12 24.26 0.062
1-5 14 24.96 0.074
1-6 16 25.44 0.089

表2

静弹性参数与静水围压关系拟合公式"

拟合公式 相关系数 a b
静弹性模量 E=a ln σ+b 0.989 91 3.785 30 14.881 30
静泊松比 μ=a ln σ+b 0.981 28 0.073 28 -0.121 02

图4

静弹性模量与静水围压关系的拟合曲线"

图5

静泊松比与静水围压关系的拟合曲线"

表3

不同静水围压下砂岩计算纵波波速"

编组 静水围压/MPa 计算纵波波速/(m·s-1)
1-1 6 3 049
1-2 8 3 114
1-3 10 3 179
1-4 12 3 239
1-5 14 3 289
1-6 16 3 337

图6

计算纵波波速与静水围压关系的拟合曲线"

表4

不同静水围压下砂岩的实测纵波波速"

编组 静水围压/MPa 实测纵波波速/(m·s-1)
1-1 6 2 814
1-2 8 2 886
1-3 10 2 952
1-4 12 3 012
1-5 14 3 066
1-6 16 3 118

表5

实测纵波波速和计算纵波波速对比分析"

静水围压/
MPa
实测纵波波速/
(m·s-1)
计算纵波波速/
(m·s-1)
误差/
%
6 2 814 3 049 8.3
8 2 886 3 114 7.9
10 2 952 3 179 7.7
12 3 012 3 239 7.5
14 3 066 3 289 7.2
16 3 118 3 337 7.0
1 吴迪, 陈子全, 甘林卫, 等. 高地应力深埋层状围岩隧道非对称变形受力机制研究[J]. 隧道建设(中英文), 2018, 38 (11): 1813- 1821.
WU Di , CHEN Ziquan , GAN Linwei , et al. Study of force mechanism of asymmetrical deformation of deep-buried layered surrounding rock tunnel under high ground stress[J]. Tunnel Construction (Chinese and English), 2018, 38 (11): 1813- 1821.
2 刘宁, 张春生, 褚卫江, 等. 超深埋长隧道地应力场综合反分析方法与应用[J]. 中国公路学报, 2018, 31 (10): 69- 78.
doi: 10.3969/j.issn.1001-7372.2018.10.007
LIU Ning , ZHANG Chunsheng , CHU Weijiang , et al. Comprehensive inversion analysis method and application of deep buried long tunnel geo-stress field[J]. China Journal of Highway and Transport, 2018, 31 (10): 69- 78.
doi: 10.3969/j.issn.1001-7372.2018.10.007
3 BIRCH F . The velocity of compressional waves in rocks to 10 kilobars: part 1[J]. Journal of Geophysical Research, 1960, 65 (4): 1083- 1102.
doi: 10.1029/JZ065i004p01083
4 MAO N H , SWEENEY J , HANSON J M , et al. Using a sonic technique to estimate in-situ stresses[J]. Rocks Mechanic in Productivity and protection, 1984, 22 (6): 167- 175.
doi: 10.1016/0148-9062(85)90172-x
5 EBERHART-PHILLIPS D , HAN D H , ZOBACK M D . Empirical relationships among seismic velocity, effective pressure, porosity, and clay content in sandstone[J]. Geophysics, 1989, 54 (1): 82- 89.
6 GREENFIELD R J , GRAHAM E K . Application of a simple relation for describing wave velocity as a function of pressure in rocks containing microcracks[J]. Journal of Geophysical Research Solid Earth, 1996, 101 (B3): 5643- 5652.
doi: 10.1029/95JB03462
7 WEPFER W W , CHRISTENSEN N I . A seismic velocity-confining pressure relation, with applications[J]. International Journal of Rock Mechanics, 1991, 28 (5): 451- 456.
doi: 10.1016/0148-9062(91)90083-X
8 WANG Q , JI S , SALISBURY M H , et al. Pressure dependence and anisotropy of P-wave velocities in ultrahigh-pressure metamorphic rocks from the Dabie-Sulu orogenic belt (China): implications for seismic properties of subducted slabs and origin of mantle reflections[J]. Tectonophysics, 2005, 398 (1): 67- 99.
doi: 10.1016/j.tecto.2004.12.001
9 ZHAO H , LI X P , LUO Y , et al. Characteristics of elastic wave propagation in jointed rock mass and development of constitutive model by coupling macroscopic and mesoscopic damage[J]. Rock and Soil Mechanics, 2017, 38 (10): 2939- 2948.
10 JI S , WANG Q , MARCOTTE D , et al. P Wave velocities, anisotropy and hysteresis in ultrahigh-pressure metamorphic rocks as a function of confining pressure[J]. Journal of Geophysical Research Solid Earth, 2007, 112 (B9): 685- 693.
11 童继强, 杨德义, 李志军, 等. 不同围压下煤层波速的实验分析[J]. 煤矿安全, 2017, 48 (11): 49- 52.
TONG Jiqiang , YANG Deyi , LI Zhijun , et al. Experimental analysis of wave velocity of coal seam under different confining pressures[J]. Safety in Coal Mines, 2017, 48 (11): 49- 52.
12 沈联蒂, 史謌. 岩性、含油气性、有效覆盖压力对纵、横波速度的影响[J]. 地球物理学报, 1994, 37 (3): 391- 399.
doi: 10.3321/j.issn:0001-5733.1994.03.014
SHEN Liandi , SHI Ge . Effect of lithologic character, petroleum and effective overburden pressure on compressional wave and shear wave velocity[J]. Chinese Journal of Geophysics, 1994, 37 (3): 391- 399.
doi: 10.3321/j.issn:0001-5733.1994.03.014
13 王密, 田家勇. 基于岩石声弹理论的波速-静水围压关系耦合模型[J]. 地球物理学进展, 2019, 34 (2): 462- 468.
WANG Mi , TIAN Jiayong . Coupled model for velocity change in rocks subjected to hydrostatic confining pressure based on rock acoustoelasticity[J]. Progress in Geophysics, 2019, 34 (2): 462- 468.
14 马中高, 伍向阳, 王中海. 有效压力对岩石纵横波速度的影响[J]. 勘探地球物理进展, 2006, (3): 183- 186.
MA Zhonggao , WU Xiangyang , WANG Zhonghai . Effect of effective pressure on the longitudinal and transverse wave velocity of rock[J]. Progress in Exploration, 2006, (3): 183- 186.
15 李阿伟, 孙东生, 王红才. 致密砂岩波速各向异性及弹性参数随围压变化规律的实验研究[J]. 地球物理学进展, 2014, 29 (2): 754- 760.
LI Awei , SUN Dongsheng , WANG Hongcai . Seismic anisotropy and elastic parameter of tight sandstone with confining pressure[J]. Progress in Geophysics, 2014, 29 (2): 754- 760.
16 陶明.高应力岩体的动态加卸荷扰动特征与动力学机理研究[D].长沙:中南大学, 2013.
TAO Ming. Characteristic of dynamic loading and unloading responses and dynamic mechanism of rocks under high initial stress[D]. Changsha: Central South University, 2013.
17 赵航.基于弹性波传播特性试验的深部裂隙岩体损伤本构模型研究[D].武汉:武汉理工大学, 2017.
ZHAO Hang. Study on damage constitutive model of deep fractured rock mass based on elastic wave propagation test[D]. Wuhan: Wuhan University of Techno-logy, 2017.
18 周斌, 孙峰, 薛世峰, 等. 水库蓄放水对库底岩石介质弹性波速影响的数值模拟[J]. 地震地质, 2014, 36 (1): 39- 51.
doi: 10.3969/j.issn.0253-4967.2014.01.004
ZHOU Bin , SUN Feng , XUE Shifeng , et al. Numerical simulation of the influence of reservoir water storage on elastic wave velocity of reservoir bottom rock[J]. Seismology and Geology, 2014, 36 (1): 39- 51.
doi: 10.3969/j.issn.0253-4967.2014.01.004
19 金解放, 王杰, 郭钟群, 等. 围压对红砂岩应力波传播特性的影响[J]. 煤炭学报, 2019, 44 (2): 435- 444.
JIN Jiefang , WANG Jie , GUO Zhongqun , et al. Influence of confining pressure on stress wave propagation characteristics of red sandstone[J]. Journal of China Coal Society, 2019, 44 (2): 435- 444.
20 李元松. 高等岩土力学[M]. 武汉: 武汉大学出版社, 2013.
[1] 武农, 张霄, 李梦天. 孔隙砂岩地层涌水灾害注浆治理的新设备及方法研究[J]. 山东大学学报(工学版), 2015, 45(4): 64-68.
[2] 张永习. 可拓综合评判在某水工隧洞岩爆等级评价中的应用[J]. 山东大学学报(工学版), 2012, 42(2): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[2] 孔宪明 鞠培军. 一类中立型不确定变时滞系统的稳定性新判据[J]. 山东大学学报(工学版), 2009, 39(5): 48 -51 .
[3] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .
[4] 任敬喜,耿金花,高齐圣 . 多因素多指标产品的质量优化[J]. 山东大学学报(工学版), 2007, 37(3): 114 -117 .
[5] 孙向勇 . 不含四圈,三圈不重点的平面图全染色的一个结论[J]. 山东大学学报(工学版), 2007, 37(3): 118 -121 .
[6] 贝广霞,楼佩煌,叶文华,王晓梅 . 精密加工中圆柱度在机检测关键技术[J]. 山东大学学报(工学版), 2007, 37(5): 65 -67 .
[7] 邓修成,沈艳军,方胜乐 . 多输入-多输出线性系统有限时间观测器设计方法[J]. 山东大学学报(工学版), 2008, 38(4): 17 -21 .
[8] 侯燕,杨猛. 高效解决复杂拓扑问题的显式界面追踪算法[J]. 山东大学学报(工学版), 2016, 46(4): 15 -20 .
[9] 刘斌 李术才 张庆松 李树忱 薛翊国. 隧道地质灾害预警体系中岩溶裂隙水综合预报技术研究[J]. 山东大学学报(工学版), 2009, 39(3): 115 -121 .
[10] 闫崇京 廖文和 郭宇 程筱胜. 基于多色图的BOM建模[J]. 山东大学学报(工学版), 2008, 38(6): 70 -75 .