您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 73-81.doi: 10.6040/j.issn.1672-3961.0.2019.256

• 土木工程 • 上一篇    下一篇

水泥土搅拌桩沿海软基处理

吕国仁1(),葛建东1,肖海涛2   

  1. 1. 山东建筑大学交通工程学院, 山东 济南 250101
    2. 山东高速轨道交通集团有限公司工程部, 山东 济南 250101
  • 收稿日期:2019-05-27 出版日期:2020-06-01 发布日期:2020-06-16
  • 作者简介:吕国仁(1965—),男,山东烟台人,教授,博士,主要研究方向为公路工程与隧道工程.E-mail:luguoren65@163.com
  • 基金资助:
    山东建筑大学科研基金资助项目(01071105)

Treatment of coastal soft foundation with cement-soil mixing pile

Guoren LÜ1(),Jiandong GE1,Haitao XIAO2   

  1. 1. School of Traffic Engineering, Shandong Jianzhu University, Jinan 250101, Shandong, China
    2. Engineering Department, Shandong High-Speed Rail Transit Group Co., Ltd., Jinan 250101, Shandong, China
  • Received:2019-05-27 Online:2020-06-01 Published:2020-06-16
  • Supported by:
    山东建筑大学科研基金资助项目(01071105)

摘要:

在沿海软土地基上直接修建公路、铁路会产生路基失稳等问题,必须进行地基处理。结合实际工程,进行布桩模拟分析,并优化水泥土搅拌桩布桩参数。通过室内配合比试验、现场成桩试验,分析水泥土强度及水泥土搅拌桩成桩质量影响因素。结果表明:提出的布桩方案安全可行,节约成本;水泥土中水泥的最佳质量分数为16%~18%,短期龄期无侧限抗压强度可达标准龄期的60%~70%,缩短了工期;施工中成桩工艺采用四搅四喷成桩质量最优;防腐剂对桩体的成桩质量和耐久性至关重要。通过成桩质量检测,综合判定此工程水泥土搅拌桩加固效果符合要求。研究结果对类似工程具有一定的参考价值,并为制定技术标准和工法提供了现场依据。

关键词: 水泥土搅拌桩, 沿海地区, 软基处理, 室内外试验

Abstract:

Direct construction of roads and railways on coastal soft soil foundation leads to subgrade instability and other problems, and foundation treatment must be carried out. Based on the actual project, the pile arrangement simulation analysis was carried out and the pile arrangement parameters of cement-soil mixing piles were optimized. Through indoor mix proportion test and on-site pile forming test, the influencing factors of cement-soil strength and pile forming quality of cement-soil mixing pile were analyzed. The results showed that the proposed pile arrangement scheme was safe and feasible and cost saving. The optimal range of cement content in cement soil was 16%-18%, and the unconfined compressive strength at short-term age could reach 60%-70% of the standard age, which shortened the construction period; During the construction, the pile-forming technology of four stirring and four spraying was of the best quality. Preservatives were very important to the quality and durability of pile body. Through pile quality inspection, it was comprehensively judged that the reinforcement effect of cement-soil mixing pile in this project meeted the requirements. The research results had certain reference value for similar projects and provide on-site basis for the formulation of technical standards and construction methods.

Key words: cement-soil mixing pile, coastal region, soft foundation treatment, indoor and outdoor experiments

中图分类号: 

  • U416.1

图1

现场照片"

表1

布桩方案"

方案序号 桩型 桩径/m 桩间距/m 桩长/m 桩型布置 备注
1 水泥土搅拌桩 0.5 1.1 9 三角形 采取临时防护措施
2 水泥土搅拌桩 0.5 1.2 6~12 三角形 桩长由里到外依次呈台阶状递增,桩长分别为6、10、12 m,加固范围加固至坡脚外5 m
3 水泥土搅拌桩+旋喷桩 0.5 1.1 9 三角形 临近既有线段落采用两排旋喷桩加固,外侧用水泥土搅拌桩加固

表2

地层物理力学指标"

土石名称 土层状态 天然密度/(g·cm-3) 桩周摩阻力/kPa 桩端极限承载力/kPa 基本承载力/kPa 压缩模量/MPa 黏聚力/kPa 内摩擦角/(°)
粉质黏土 软塑 1.84 30 1 500 90 2.5 29 8.0
粉质黏土 软塑 1.85 35 1 500 100 2.9 30 8.5
粉土 饱和 1.98 35 1 500 90 5.5 17 23.0
粉砂 饱和 1.95 25 1 800 90 6.0 3 25.0
粉质黏土 软塑-硬塑 19.50 40 1 600 120 4.2 33 9.5
粉土 饱和 2.00 45 1 600 120 6.2 17 22.0

图2

稳定计算模型界面"

图3

沉降计算输出结果"

表3

计算结果汇总"

方案序号 方案 承载力/kPa 沉降/m 最小稳定系数 总桩长/m
1 桩径0.5 m,桩间距1.1 m,桩长9.0 m 163 0.262 1.38 381 765
2 桩径0.5 m,桩间距1.2 m,桩长成台阶状6~12.0 m 151 0.221 1.45 399 800
3 桩径0.5 m,桩间距1.1 m,桩长9.0 m 163 0.286 1.61 382 765(水泥搅拌桩286 324,旋喷桩96 441)

图4

各龄期下不同水泥掺量的无侧限抗压强度"

图5

各水泥掺量下不同龄期的无侧限抗压强度"

图6

各龄期下不同水灰比的无侧限抗压强度"

图7

桩头堆土现象"

图8

常规工艺下开挖桩头"

图9

常规工艺下成桩取芯结果"

图10

新工艺下开挖桩头"

图11

新工艺下取芯结果"

表4

无侧限抗压强度"

工艺水泥质量分数为16%的抗压强度/MPa水泥质量分数为17%的抗压强度/MPa水泥质量分数为18%的抗压强度/MPa
四搅两喷 1.21 1.25 1.23 1.30 1.33 1.32 1.34 1.38 1.36
四搅四喷 1.32 1.33 1.33 1.35 1.36 1.35 1.41 1.42 1.42

图12

复合地基承载力检测"

表5

复合地基承载力"

工艺 水泥质量分数为16%的承载力/kPa 水泥质量分数为17%的承载力/kPa 水泥质量分数为18%的承载力/kPa
四搅两喷 121 132 150
四搅四喷 134 154 172

图13

抽检工程桩的开挖桩头"

图14

抽检工程桩的取芯结果"

表6

桩身无侧限抗压强度统计结果汇总表"

序号 桩号 设计桩长/m 试验龄期 取芯率/% 无侧限抗压强度/MPa说明 不合格率/%
最大值 最小值 平均值
1 2-87# 8.0 >28 >85 1.85 0.71 1.25 较完整 >10
2 2-1760# 8.0 >28 >85 6.07 0.46 2.15 较完整 <10
3 2-1835# 8.0 >28 >85 4.47 0.42 1.70 较完整 <10
4 2-1695# 8.0 >28 >85 2.15 0.75 1.48 较完整 <10
5 3-518# 8.0 >28 >85 3.98 1.28 2.67 较完整 <10
6 3-483# 8.0 >28 >85 5.23 1 2.27 较完整 <10
7 3-1006# 8.0 >28 >85 1.93 0.46 1.41 较完整 <10
8 3-346# 8.0 >28 >85 2.07 0.79 1.57 较完整 <10
9 3-375# 8.0 >28 >85 2.31 0.18 1.58 较完整 <10
10 4-92# 8.0 >28 >85 2.29 0.31 1.45 较完整 <10
11 4-840# 8.0 >28 >85 3.21 0.51 1.40 较完整 <10

图15

竖向载荷-沉降曲线"

图16

沉降-时间曲线"

1 陈维勇, 林伟强. 深层水泥土搅拌桩在淤泥土路基中的应用分析[J]. 公路交通科技(应用技术版), 2018, 14 (6): 21- 23.
CHEN Weiyong , LIN Weiqiang . Application analysis of deep cement-soil mixing pile in silt subgrade[J]. Highway Traffic Technology (Applied Technology Version), 2018, 14 (6): 21- 23.
2 吴邵海, 王智猛, 褚宇光. 水泥土搅拌桩处理海相沉积软土的试验研究[J]. 高速铁路技术, 2018, 9 (6): 11- 15.
WU Shaohai , WANG Zhimeng , CHU Yuguang . Experimental study on the treatment of Marine sedimentary soft soil with soil-cement mixing pile[J]. High Speed Railway Technology, 2018, 9 (6): 11- 15.
3 刘松玉, 易耀林, 杜延军, 等. 变径搅拌桩处理成层软弱地基的现场试验[J]. 中国公路学报, 2012, 25 (2): 1- 8.
doi: 10.3969/j.issn.1001-7372.2012.02.002
LIU Songyu , YI Yaolin , DU Yanjun , et al. Field test of reducing diameter mixing pile treating soft foundation[J]. China Highway Journal, 2012, 25 (2): 1- 8.
doi: 10.3969/j.issn.1001-7372.2012.02.002
4 叶观宝, 叶书麟. 水泥土搅拌桩加固软基的试验研究[J]. 同济大学学报, 1995, 23 (3): 270- 274.
YE Guanbao , YE Shulin . Experimental study on strengthening soft foundation with cement soil mixing pile[J]. Journal of Tongji University, 1995, 23 (3): 270- 274.
5 许春松.水泥搅拌桩复合地基承载特性及其在软土路基中的应用[D].长沙:湖南大学, 2012.
XU Chunsong. Bearing characteristics of cement mixing pile composite foundation and its application in soft soil subgrade[D]. Changsha: Hunan University, 2012.
6 李丹, 王吉霖, 谭玄, 等. 混凝土芯水泥土搅拌桩群桩复合地基的承载特性[J]. 科学技术与工程, 2018, 18 (9): 118- 123.
doi: 10.3969/j.issn.1671-1815.2018.09.017
LI Dan , WANG Jilin , TAN Xuan , et al. Bearing capacity of composite foundation with concrete core and soil-cement mixing piles[J]. Science Technology and Engineering, 2018, 18 (9): 118- 123.
doi: 10.3969/j.issn.1671-1815.2018.09.017
7 龚晓南. 复合地基发展概况及其在高层建筑中的应用[J]. 土木工程学报, 1999, 32 (6): 3- 10.
doi: 10.3321/j.issn:1000-131X.1999.06.001
GONG Xiaonan . Development of composite foundation and its application in high-rise buildings[J]. Journal of Civil Engineering, 1999, 32 (6): 3- 10.
doi: 10.3321/j.issn:1000-131X.1999.06.001
8 刘松玉, 席培胜, 储海岩, 等. 双向水泥土搅拌桩加固软土地基试验研究[J]. 岩土力学, 2007, 20 (3): 560- 564.
doi: 10.3969/j.issn.1000-7598.2007.03.024
LIU Songyu , XI Peisheng , CHU Haiyan , et al. Experimental study on strengthening soft soil foundation with bi-directional cement soil mixing piles[J]. Rock and Soil Mechanics, 2007, 20 (3): 560- 564.
doi: 10.3969/j.issn.1000-7598.2007.03.024
9 梁旭, 蔡元强. 复合地基动弹性模量和阻尼比的试验研究[J]. 土木工程学报, 2004, 37 (1): 96- 101.
doi: 10.3321/j.issn:1000-131X.2004.01.018
LIANG Xu , CAI Yuanqiang . Experimental study on dynamic elastic modulus and damping ratio of composite foundation[J]. Journal of Civil Engineering, 2004, 37 (1): 96- 101.
doi: 10.3321/j.issn:1000-131X.2004.01.018
10 叶彩娟. 水泥掺量对搅拌桩复合地基沉降的影响分析[J]. 铁道建筑, 2018, 58 (12): 96- 99.
YE Caijuan . Analysis of influence of cement content on settlement of composite foundation of mixing pile[J]. Railway Construction, 2018, 58 (12): 96- 99.
11 齐善忠, 郑俊垚. 地质条件对水泥搅拌桩桩体强度影响的试验研究[J]. 黄河水利职业技术学院学报, 2018, 30 (4): 29- 33.
QI Shanzhong , ZHENG Junyao . Experimental study on the influence of geological conditions on the strength of cement mixing pile[J]. Journal of Yellow River Conservancy Technical College, 2018, 30 (4): 29- 33.
12 张崇淼. 沉降控制的水泥土搅拌桩复合地基在软土地区应用[J]. 福建建筑, 2018, 15 (9): 57- 60.
ZHANG Chongmiao . The cement-soil mixing pile composite foundation with settlement control is applied in soft soil area[J]. Fujian Architecture, 2018, 15 (9): 57- 60.
13 张校刚. 深层搅拌桩复合地基加固实施分析[J]. 中国公路, 2018, 18 (10): 100- 101.
doi: 10.3969/j.issn.1006-3897.2018.10.035
ZHANG Xiaogang . Analysis on the reinforcement of deep mixing pile composite foundation[J]. China Road, 2018, 18 (10): 100- 101.
doi: 10.3969/j.issn.1006-3897.2018.10.035
14 屈伟, 蒋超. 水泥土搅拌桩施工工艺优化研究[J]. 江苏建筑, 2018, 21 (2): 90- 92.
doi: 10.3969/j.issn.1005-6270.2018.02.024
QU Wei , JIANG Chao . Study on construction technology optimization of cement soil mixing pile[J]. Jiangsu Building, 2018, 21 (2): 90- 92.
doi: 10.3969/j.issn.1005-6270.2018.02.024
15 陈婉芬, 姚力, 许宏燕. 金洲民营总部水泥搅拌桩检测方法和分析总结[J]. 中国水运(下半月), 2018, 18 (1): 247- 248.
CHEN Wanfen , YAO Li , XU Hongyan . Testing method and analysis summary of cement mixing pile in jinzhou private headquarters[J]. China Water Transport (Second Half), 2018, 18 (1): 247- 248.
16 胥陈浩. 水泥土搅拌桩复合地基在土木工程施工中的实践[J]. 赤峰学院学报(自然科学版), 2017, 33 (23): 69- 70.
doi: 10.3969/j.issn.1673-260X.2017.23.031
XU Chenhao . The practice of cement soil mixing pile composite foundation in civil engineering construction[J]. Journal of Chifeng University (Natural Science Edition), 2017, 33 (23): 69- 70.
doi: 10.3969/j.issn.1673-260X.2017.23.031
17 何林海, 曹阳, 王朝晖, 等. 受硫酸盐侵蚀水下高性能混凝土的体积膨胀效应研究[J]. 混凝土, 2016, 324 (10): 57- 59.
doi: 10.3969/j.issn.1002-3550.2016.10.015
HE Linhai , CAO Yang , WANG Zhaohui , et al. Study on the volumetric expansion effect of sulfate-induced underwater high performance concrete[J]. Concrete, 2016, 324 (10): 57- 59.
doi: 10.3969/j.issn.1002-3550.2016.10.015
18 宁宝宽.硫酸盐对水泥土的侵蚀作用研究[C]//岩石力学与工程学术大会论文集.北京:中国岩石力学与工程学会, 2006.
NING Baokuan. Study on the erosion effect of sulfate on cement soil[C]//Oceedings of the Ninth National Conference on Rock Mechanics and Engineering. Beijing: Chinese Society of Rock Mechanics and Engineering, 2006.
[1] 蒋树磊,杨世锋,杨令航,师文明,邹福清,单青红. 城市快速路小间距并行高铁深塘跨越技术[J]. 山东大学学报 (工学版), 2019, 49(1): 91-100.
[2] 宋修广,周健,侯越,葛智,孙仁娟. 抗分散透水性混凝土性能研究[J]. 山东大学学报(工学版), 2016, 46(4): 60-67.
[3] 郭永建,曹周阳,生丽娟. 岩质边坡锚杆应力监测离心模型试验研究[J]. 山东大学学报(工学版), 2016, 46(2): 101-107.
[4] 弋晓明1,2,王松根2,宋修广1*,臧亚囡1. 路基容许不均匀沉降控制指标的理论分析[J]. 山东大学学报(工学版), 2013, 43(5): 68-73.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 陈瑞,李红伟,田靖. 磁极数对径向磁轴承承载力的影响[J]. 山东大学学报(工学版), 2018, 48(2): 81 -85 .
[2] 王波,王宁生 . 机电装配体拆卸序列的自动生成及组合优化[J]. 山东大学学报(工学版), 2006, 36(2): 52 -57 .
[3] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[4] 浦剑1 ,张军平1 ,黄华2 . 超分辨率算法研究综述[J]. 山东大学学报(工学版), 2009, 39(1): 27 -32 .
[5] 秦通,孙丰荣*,王丽梅,王庆浩,李新彩. 基于极大圆盘引导的形状插值实现三维表面重建[J]. 山东大学学报(工学版), 2010, 40(3): 1 -5 .
[6] 张英,郎咏梅,赵玉晓,张鉴达,乔鹏,李善评 . 由EGSB厌氧颗粒污泥培养好氧颗粒污泥的工艺探讨[J]. 山东大学学报(工学版), 2006, 36(4): 56 -59 .
[7] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .
[8] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[9] 李士进,王声特,黄乐平. 基于正反向异质性的遥感图像变化检测[J]. 山东大学学报(工学版), 2018, 48(3): 1 -9 .
[10] 张恭孝,杨荣华 . 水杨醛缩甲基氨基硫脲Schiff碱配合物的合成与表征[J]. 山东大学学报(工学版), 2008, 38(3): 108 -111 .