山东大学学报 (工学版) ›› 2020, Vol. 50 ›› Issue (3): 51-57.doi: 10.6040/j.issn.1672-3961.0.2019.414
Baocheng LIU(),Yan PIAO*(),Xuemei SONG
摘要:
由于各种因素的干扰,在现实复杂的情况下目标跟踪过程中可能出现模型漂移和跟踪失败等问题,针对目标跟踪的鲁棒性和准确性提出一种联合检测的自适应融合目标跟踪算法。根据深层和浅层卷积特征具有的不同优点,使它们单独作用于相关滤波器得到其各自的响应分数,通过最小化损失使不同卷积特征的响应分数自适应融合。结合本研究的位置检测方法判断预测位置的有效性和真实性,得到最优的目标跟踪结果。在OTB-2015和VOT-2017两个数据库中进行大量测试,试验结果表明,本研究所提方法与LSART算法相比鲁棒性提高了10%,准确性提高了3.9%,并且对目标遮挡和尺度变化具有出色的性能表现。
中图分类号:
1 | 葛宝义, 左宪章, 胡永江, 等. 基于双步相关滤波的目标跟踪算法[J]. 红外与激光工程, 2018, 47 (12): 388- 397. |
GE Baoyi , ZUO Xianzhang , HU Yongjiang , et al. Object tracking algorithm based on two-step correlation filter[J]. Infrared and Laser Engineering, 2018, 47 (12): 388- 397. | |
2 | BHAT G, JOHNANDER J, DANELLJAN M, et al. Unveiling the power of deep tracking[C]//Proceeding of the European Conference on Computer Vision. Munich, Germany: Springer, 2018. |
3 | BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]//Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. |
4 | HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]//European Conference on Computer Vision. Berlin, Germany: Springer, 2012. |
5 | DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]//IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014. |
6 |
HENRIQUES J F , CASERO R , MARTINS P , et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37 (3): 583- 596.
doi: 10.1109/TPAMI.2014.2345390 |
7 | DANELLJAN M, HAGER G, KHAN F S, et al. Learning spatially regularized correlation filters for visual tracking[C]//IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015. |
8 |
DUANMU F , MA Z , WNAG Y . Fast mode and partition decision using machine learning for intra-frame coding in HEVC screen content coding extension[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2016, 6 (4): 517- 531.
doi: 10.1109/JETCAS.2016.2597698 |
9 | NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. LAS Vegas, USA: IEEE, 2016. |
10 | NAM H, BAEK M, HAN B. Modeling and propagating cnns in a tree structure for visual tracking[J/OL]. Computer Science. arXiv: 1608.07242v1.[2019-09-28]. https://arxiv.org/abs/1608.07242. |
11 | DANELLJAN M, HAGER G, KHAN F S, et al. Convolutional features for correlation filter based visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision Workshops. Santiago, Chile: IEEE, 2015. |
12 | DANELLJAN M, ROBINSON A, KHAN F S, et al. Beyond correlation filters: learning continuous convolution operators for visual tracking[C]//European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016. |
13 | DANELLJAN M, BHAT G, KHAN F S, et al. ECO: efficient convolution operators for tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu Hawaii, USA: IEEE, 2017. |
14 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceeding of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, USA: IEEE, 2016. |
15 |
WU Y , LIM J , YANG M H . Object tracking benchmark[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2015, 37 (9): 1834- 1848.
doi: 10.1109/TPAMI.2014.2388226 |
16 | KRISTAN M, LEONARDIS A, MATAS J, et al. The visual object tracking vot2017 challenge results[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. |
17 | LI F, TIAN C, ZUO W, et al. Learning spatial-temporal regularized correlation filters for visual tracking[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018. |
18 | GALOOGAHI H K, FAGG A, LUCEY S. Learning background-aware correlation filters for visual tracking[C]//Proceedings of the IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017. |
19 | BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional siamese networks for object tracking[C]//European Conference on Computer Vision. Amsterdam, the Netherlands: Springer, 2016. |
20 | 刘万军, 孙虎, 姜文涛. 自适应特征选择的相关滤波跟踪算法[J]. 光学学报, 2019, 39 (6): 242- 255. |
LIU Wanjun , SUN Hu , JIANG Wentao . Correlation filter tracking algorithm for adaptive feature selection[J]. Acta Optica Sinica, 2019, 39 (6): 242- 255. |
[1] | 黄劲潮. 深度残差特征与熵能量优化运动目标跟踪算法[J]. 山东大学学报 (工学版), 2019, 49(4): 14-23. |
[2] | 侯秋林,孙杰,皇攀凌,孙超,牟文平. 基于机器视觉刀具几何参数检测算法与误差分析[J]. 山东大学学报(工学版), 2017, 47(4): 77-82. |
[3] | 马帅依凡,赵子健. 基于人工标记的手术导航仪[J]. 山东大学学报(工学版), 2017, 47(3): 63-68. |
[4] | 王海军,葛红娟,张圣燕. 基于L1范数和最小软阈值均方的目标跟踪算法[J]. 山东大学学报(工学版), 2016, 46(3): 14-22. |
[5] | 郭志波, 董健, 庞成. 多技术融合的Mean-Shift目标跟踪算法[J]. 山东大学学报(工学版), 2015, 45(2): 10-16. |
[6] | 葛凯蓉, 常发亮, 董文会. 基于局部敏感直方图的稀疏表达跟踪算法[J]. 山东大学学报(工学版), 2014, 44(5): 14-19. |
[7] | 李武,侯志强*,魏国剑,余旺盛. 跟踪框自适应的尺度变化目标跟踪算法[J]. 山东大学学报(工学版), 2014, 44(2): 28-34. |
[8] | 邱晓欣1,2,张文强1,2*,秦晋贤1,2,杜正阳1,2,张德峰1,2. 恶劣环境下多目标实时跟踪算法研究[J]. 山东大学学报(工学版), 2014, 44(2): 21-27. |
[9] | 方 挺,杨 忠,沈春林 . 无人机编队视频序列中的多目标精确跟踪[J]. 山东大学学报(工学版), 2008, 38(4): 22-26 . |
[10] | 毕侠飞,孙同景,杨福刚,张巍 . 非接触式并行连铸方坯在线定尺切割系统研究[J]. 山东大学学报(工学版), 2008, 38(1): 52-55 . |
[11] | 冯显英,任长志,黄燕云 . 基于机器视觉的异性纤维检测系统[J]. 山东大学学报(工学版), 2006, 36(4): 5-08 . |
[12] | 马丽,常发亮,乔谊正 . 基于遗传算法和粒子滤波器的非刚性目标跟踪[J]. 山东大学学报(工学版), 2006, 36(3): 26-29 . |
|