山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (6): 1-10.doi: 10.6040/j.issn.1672-3961.0.2019.312
• 编委约稿 • 下一篇
Jucheng YANG(
),Shujie HAN,Lei MAO,Xiangzi DAI,Yarui CHEN
摘要:
基于动态路由规则的胶囊网络模型是近年来新提出的神经网络模型,被认为可能成为下一代重要的神经网络模型。近年来,众多研究表明胶囊网络具备更好地拟合特征的能力,但是由于计算开销巨大,网络模型始终无法适应大数据集的要求。减少计算开销成为了胶囊网络的研究热点。减少胶囊网络的计算开销通常有两种方式,即优化胶囊法和优化路由法。优化胶囊法通常以应用目的为驱动,设计专门针对某种分类任务的网络模型;优化路由法则更具一般性,从算法角度提升胶囊网络的性能。
中图分类号:
| 1 | HINTON G E, KRIZHEVSKY A, WANG S D. Transforming auto-encoders[C]//International Conference on Artificial Neural Networks. Berlin, Germany: Springer, 2011: 44-51. |
| 2 | SABOUR S, FROSST N, HINTON G E. Dynamic routing between capsules[C]//Neural Information Processing Systems. California, USA: NIPS Proceeding, 2017: 3856-3866. |
| 3 | HINTON G E, SABOUR S, FROSST N. Matrix capsules with EM routing[EB/OL].(2018-04)[2019-06-13]. https://openreview.net/pdf?id=HJWLfGWRb. |
| 4 | ZHANG L, EDRAKI M, QI G J. CapProNet: deep feature learning via orthogonal projections onto capsule subspaces[C]//Neural Information Processing Systems. Montréal, Canada: NIPS Proceeding, 2018: 5814-5823. |
| 5 | PHAYE S S R, SIKKA A, DHALL A, et al. Dense and diverse capsule networks: making the capsules learn better[EB/OL].(2018-05)[2019-06-13]. https://arxiv.org/pdf/1805.04001.pdf. |
| 6 | SHAHROUDNEJAD A, AFSHAR P, PLATANIOTIS K N, et al. Improved explainability of capsule networks: Relevance path by agreement[C]//2018 IEEE Global Conference on Signal and Information Processing. California, USA: IEEE, 2018: 549-553. |
| 7 | DELIÈKGE A, CIOPPA A, VAN DROOGENBROECK M. HitNet: a neural network with capsules embedded in a Hit-or-Miss layer, extended with hybrid data augmentation and ghost capsules[EB/OL].(2018-06)[2019-06-13]. https://arxiv.org/pdf/1806.06519.pdf. |
| 8 | NEILL J O. Siamese capsule networks[EB/OL].(2018-05)[2019-06-13]. https://arxiv.org/pdf/1805.07242.pdf. |
| 9 | DUARTE K, RAWAT Y, SHAH M. Videocapsulenet: a simplified network for action detection[C]//Neural Information Processing Systems. Montréal, Canada: NIPS Proceeding, 2018: 7610-7619. |
| 10 | BAHADORI M T. Spectral capsule networks[EB/OL].(2018-02)[2019-06-13]. https://openreview.net/pdf?id=HJuMvYPaM. |
| 11 | RAWLINSON D, AHMED A, KOWADLO G. Sparse unsupervised capsules generalize better[EB/OL].(2018-04)[2019-06-13]. https://arxiv.org/pdf/1804.06094.pdf. |
| 12 | SAHU S K, KUMAR P, SINGH A P. Dynamic routing using inter capsule routing protocol between capsules[C]//2018 UKSim-AMSS 20th International Conference on Computer Modelling and Simulation. Cambridge, UK: IEEE, 2018: 1-5. |
| 13 | WANG D, LIU Q. An optimization view on dynamic routing between capsules[EB/OL].(2018-02)[2019-06-13]. https://openreview.net/pdf?id=HJjtFYJDf. |
| 14 | ZHANG S, ZHOU Q, WU X. Fast dynamic routing based on weighted kernel density estimation[C]//International Symposium on Artificial Intelligence and Robotics. Nanjing, China: Springer, 2018: 301-309. |
| 15 | MOBINY A, VAN NGUYEN H.Fast capsnet for lung cancer screening[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention. Granada, Spain: Springer, 2018: 741-749. |
| 16 | KIM Y, WANG P, ZHU Y, et al. A capsule network for traffic speed prediction in complex road networks[C]//2018 Sensor Data Fusion: Trends, Solutions, Applications. Nordrhein-Westfalen, Germany: IEEE, 2018: 1-6. |
| 17 | JIMÉINEZ-SÁBNCHEZ A, ALBARQOUNI S, MATEUS D. Capsule networks against medical imaging data challenges[EB/OL]. (2018-07)[2019-06-13]. https://arxiv.org/pdf/1807.07559.pdf. |
| 18 | KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]// Neural Information Processing Systems. Lake Tahoe, USA: NIPS Proceeding, 2012: 1097-1105. |
| 19 | NGUYEN D Q, VU T, NGUYEN T D, et al. A capsule network-based embedding model for knowledge graph completion and search personalization [EB/OL].(2018-04)[2019-06-13]. https://arxiv.org/pdf/1808.04122.pdf. |
| 20 | AFSHAR P, MOHAMMADI A, PLATANIOTIS K N. Brain tumor type classification via capsule networks[C]//2018 25th IEEE International Conference on Image Processing. Athens, Greece: IEEE, 2018: 3129-3133. |
| 21 | DE JESUS D R, CUEVAS J, RIVERA W, et al. Capsule networks for protein structure classification and prediction[EB/OL].(2018-08)[2019-06-13]. https://arxiv.org/pdf/1808.07475.pdf. |
| 22 |
DENG F , PU S , CHEN X , et al. Hyperspectral image classification with capsule network using limited training samples[J]. Sensors, 2018, 18 (9): 3153.
doi: 10.3390/s18093153 |
| 23 | UPADHYAY Y, SCHRATER P. Generative adversarial network architectures for image synthesis using capsule networks[EB/OL].(2018-06)[2019-06-13]. https://arxiv.org/pdf/1806.03796.pdf. |
| 24 | JAISWAL A, ABDALMAGEED W, WU Y, et al. Capsulegan: generative adversarial capsule network[C]//European Conference on Computer Vision. Munich, Germany: Springer, 2018: 526-535. |
| 25 | ZHAO W, YE J, YANG M, et al. Investigating capsule networks with dynamic routing for text classification[EB/OL].(2018-05)[2019-06-13]. https://arxiv.org/pdf/1804.00538.pdf. |
| [1] | 马川,刘彦呈,刘厶源,张勤进. 考虑未知死区非线性的自适应模糊神经UUV航迹跟踪控制[J]. 山东大学学报 (工学版), 2019, 49(3): 47-56. |
| [2] | 郑店坤,许同乐,尹召杰,孟庆民. 改进PSO-BP神经网络对尾矿坝地下水位的预测方法[J]. 山东大学学报 (工学版), 2019, 49(3): 108-113. |
| [3] | 何奕江,杜军平,寇菲菲,梁美玉,王巍,罗盎. 基于深度卷积神经网络的图像自编码算法[J]. 山东大学学报 (工学版), 2019, 49(2): 61-66. |
| [4] | 侯霄雄,许新征,朱炯,郭燕燕. 基于AlexNet和集成分类器的乳腺癌计算机辅助诊断方法[J]. 山东大学学报 (工学版), 2019, 49(2): 74-79. |
| [5] | 郭芳,陈蕾,杨子文. 基于MGU的大规模IP骨干网络实时流量预测[J]. 山东大学学报 (工学版), 2019, 49(2): 88-95. |
| [6] | 杨亚楠,夏斌,谢楠,袁文浩. 基于BP神经网络和多元Taylor级数的混合定位算法[J]. 山东大学学报 (工学版), 2019, 49(1): 36-40. |
| [7] | 权稳稳,林明星. CNN特征与BOF相融合的水下目标识别算法[J]. 山东大学学报 (工学版), 2019, 49(1): 107-113. |
| [8] | 刘振丙,方旭升,杨辉华,蓝如师. 基于多尺度残差神经网络的阿尔茨海默病诊断分类[J]. 山东大学学报 (工学版), 2018, 48(6): 1-7, 18. |
| [9] | 宋琦悦,穆学文,程欢. 改进滴水算法的黏连字符分割方法[J]. 山东大学学报 (工学版), 2018, 48(6): 89-94, 108. |
| [10] | 沈冬冬,周风余,栗梦媛,王淑倩,郭仁和. 基于集成深度神经网络的室内无线定位[J]. 山东大学学报 (工学版), 2018, 48(5): 95-102. |
| [11] | 张璞,刘畅,王永. 基于特征融合和集成学习的建议语句分类模型[J]. 山东大学学报 (工学版), 2018, 48(5): 47-54. |
| [12] | 梁蒙蒙,周涛,夏勇,张飞飞,杨健. 基于PSO-ConvK卷积神经网络的肺部肿瘤图像识别[J]. 山东大学学报 (工学版), 2018, 48(5): 77-84. |
| [13] | 张宪红,张春蕊. 基于六维前馈神经网络模型的图像增强算法[J]. 山东大学学报(工学版), 2018, 48(4): 10-19. |
| [14] | 赵彦霞, 王熙照. 基于SVD和DCNN的彩色图像多功能零水印算法[J]. 山东大学学报(工学版), 2018, 48(3): 25-33. |
| [15] | 曹雅,邓赵红,王士同. 基于单调约束的径向基函数神经网络模型[J]. 山东大学学报(工学版), 2018, 48(3): 127-133. |
|