您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (5): 37-43.doi: 10.6040/j.issn.1672-3961.0.2019.082

• 电气工程———人工智能应用专题 • 上一篇    下一篇

基于两层优化的主动配电网储能优化配置

王李龑1(),王飞2,曹永吉3,*(),张涛1,张亚新1,卢奕3,刘子菡3   

  1. 1. 国网山东省电力公司聊城供电公司, 山东 聊城 252200
    2. 国网山东省电力公司, 山东 济南 250001
    3. 电网智能化调度与控制教育部重点实验室(山东大学), 山东 济南 250061
  • 收稿日期:2019-02-26 出版日期:2019-10-20 发布日期:2019-10-18
  • 通讯作者: 曹永吉 E-mail:fazhancehuabu@126.com;caoyongji1991@163.com
  • 作者简介:王李龑(1975—),男,山东聊城人,高级工程师,主要研究方向为电网规划和新能源发电技术.E-mail:fazhancehuabu@126.com
  • 基金资助:
    国网山东省电力公司科技资助项目(2018A-021)

Bi-level optimal configuration of energy storage system in an active distribution network

Liyan WANG1(),Fei WANG2,Yongji CAO3,*(),Tao ZHANG1,Yaxin ZHANG1,Yi LU3,Zihan LIU3   

  1. 1. Liaocheng Power Supply Company, State Grid Shandong Electric Power Company, Liaocheng 252200, Shandong, China
    2. State Grid Shandong Electric Power Company, Jinan 250001, Shandong, China
    3. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China
  • Received:2019-02-26 Online:2019-10-20 Published:2019-10-18
  • Contact: Yongji CAO E-mail:fazhancehuabu@126.com;caoyongji1991@163.com
  • Supported by:
    国网山东省电力公司科技资助项目(2018A-021)

摘要:

针对主动配电网储能系统优化配置问题,考虑运行控制策略对规划方案的影响,提出一种基于两层优化的配置方法。在短时间尺度的内层优化中,利用低通滤波算法提取上网功率高频分量,以高频分量变异系数和可再生能源浪费率最小为目标,基于标量化方法和粒子群算法优化主动配电网控制策略。在长时间尺度的外层优化中,构建多目标优化模型,最小化投资成本和可再生能源浪费率,采用NSGA-Ⅱ算法求取储能系统配置的Pareto最优解。由于运行控制和规划配置间存在相互影响,将不同时间尺度的内外层优化置于统一的框架内,以可再生能源浪费率、储能系统配置位置和容量为耦合变量交替迭代求解。结合算例,对所提模型及其求解方法进行了验证。算例分析表明:主动配电网中储能系统优化配置能够有效提高电网对可再生能源的消纳能力。

关键词: 主动配电网, 储能系统, 优化配置, 两层优化

Abstract:

In order to optimize the configuration of energy storage system in an active distribution network, a bi-level optimization method was proposed, considering the impact of operation strategy on planning scheme. In the short-scale inner optimization, the high-frequency components of integration power was extracted by the low-pass filtering algorithm. And a multi-objective optimization model was constructed to minimize the variation coefficient of extracted high-frequency component and the rate of the loss of renewable energy, which was simplified into a scalar optimization problem and solved by the particle swarm optimization algorithm. In the long-scale outer optimization, a multi-objective optimization model was established to minimize the investment cost and the rate of the loss of renewable energy, of which the Pareto optimal solutions were searched by the NSGA-Ⅱ. The location and capacity of energy storage system and the rate of the loss of renewable energy were taken as coupling variables, based on which the inner and outer models with different time scales were solved in a united optimization frame. The case study validated the effectiveness of the proposed model and corresponding solving methods, of which the results indicate that the optimal configuration of energy storage system in an active distribution network could enhance the accommodation ability of renewable energy.

Key words: active distribution network, energy storage system, optimal configuration, bi-level optimization

中图分类号: 

  • TM61

图1

内外层优化模型交互关系示意图"

图2

基于PSO和NSGA-Ⅱ的两层优化求解方法"

表1

风电机组参数"

额定功率/kW 切入风速/(m·s-1) 切出风速/(m·s-1) 额定风速/(m·s-1) 发电效率/%
850 3.0 13.5 25.0 95.00

表2

光伏模块参数"

长×宽/(mm×mm) 发电效率/%
1650×992 12.48

表3

发电装机容量"

系统编号 风电场A 风电场B 风电场C 风电场D 光伏电站E
装机容量/MW 49.30 99.45 49.30 99.45 50.00

表4

ESS单元参数"

额定容量/(kW·h) 放电深度/% 最大充电功率/kW 最大放电功率/kW 充电效率/% 放电效率/%
120 40 10 10 80 90

图3

NASA典型日气象数据"

表5

ESS配置位置优化结果"

Pareto最优解编号 风电场A 风电场B 风电场C 风电场D 光伏电站E
1 1 0 1 0 1
2 0 1 1 0 1
3 1 0 1 0 1
4 1 0 1 0 1
5 1 0 1 0 1

表6

ESS配置容量优化结果"

Pareto最优解编号 ESS 1配置单元数量 ESS 2配置单元数量 ESS 3配置单元数量
1 256 336 205
2 100 101 100
3 171 193 143
4 223 252 167
5 164 179 132

表7

ESS配置优化目标计算结果"

Pareto最优解编号 CE/万元 Rce/% Chg/%
1 3 192 17.092 54.17
2 1 200 19.900 82.35
3 2 020 17.266 68.02
4 2 560 17.125 61.82
5 1 896 17.532 73.59

表8

Pareto最优解3场景下AND运行性能指标"

发电系统编号 Sg/(kW·h) Sc/(kW·h) Chg/%
风电场A 3 123 509 90 058 24.21
风电场B 7 990 714 402 831 10.43
风电场C 2 954 325 79 606 37.33
风电场D 2 712 544 81 172 119.64
光伏电站E 316 920 18 231 148.51

表9

未配置ESS场景下AND运行性能指标"

发电系统编号 Sg/(kW·h) Sc/(kW·h) Chg/%
风电场A 3 067 721 145 813 26.15
风电场B 7 990 714 402 831 10.43
风电场C 2 870 582 157 453 37.46
风电场D 2 712 544 81 172 119.64
光伏电站E 304 593 22 287 156.48
1 鲁宗相, 黄瀚, 单葆国, 等. 高比例可再生能源电力系统结构形态演化及电力预测展望[J]. 电力系统自动化, 2017, 41 (9): 12- 18.
LU Zongxiang , HUANG Han , SHAN Baoguo , et al. Morphological evolution model and power forecasting prospect of future electric power systems with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41 (9): 12- 18.
2 王飞, 宋士瞻, 曹永吉, 等. 基于连续小波变换的风光发电资源多尺度评估[J]. 山东大学学报(工学版), 2018, 48 (5): 124- 130.
WANG Fei , SONG Shizhan , CAO Yongji , et al. Multi-scale assessment of wind-solar generation resources based on continuous wavelet transform[J]. Journal of Shandong University (Engineering Science), 2018, 48 (5): 124- 130.
3 张恒旭, 施啸寒, 刘玉田, 等. 我国西北地区可再生能源基地对全球能源互联网构建的支撑作用[J]. 山东大学学报(工学版), 2016, 46 (4): 96- 102.
ZHANG Hengxu , SHI Xiaohan , LIU Yutian , et al. Support of the renewable energy base in northwest of China on the construction of global energy interconnection[J]. Journal of Shandong University (Engineering Science), 2016, 46 (4): 96- 102.
4 ZHANG H X , CAO Y J , ZHANG Y , et al. Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data[J]. Applied Energy, 2018, 216, 172- 182.
doi: 10.1016/j.apenergy.2018.02.094
5 刘晓明, 牛新生, 张怡, 等. 基于NASA观测数据的风电出力时空分布及波动特性分析[J]. 山东大学学报(工学版), 2016, 46 (4): 111- 116.
LIU Xiaoming , NIU Xinsheng , ZHANG Yi , et al. Analysis of spatial and temporal distribution of wind output and variation characteristics based on NASA observation data[J]. Journal of Shandong University (Engineering Science), 2016, 46 (4): 111- 116.
6 戚永志, 刘玉田. 风光储联合系统输出功率滚动优化与实时控制[J]. 电工技术学报, 2014, 29 (8): 265- 273.
doi: 10.3969/j.issn.1000-6753.2014.08.034
QI Yongzhi , LIU Yutian . Output power rolling optimization and real-time control in wind-photovoltaic-storage hybrid system[J]. Transactions of China Electrotechnical Society, 2014, 29 (8): 265- 273.
doi: 10.3969/j.issn.1000-6753.2014.08.034
7 CAO Y J , ZHANG Y , ZHANG H X , et al. Probabilistic optimal PV capacity planning for wind farm expansion based on NASA data[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (3): 1291- 1300.
doi: 10.1109/TSTE.2017.2677466
8 尤毅, 刘东, 于文鹏, 等. 主动配电网技术及其进展[J]. 电力系统自动化, 2012, 36 (18): 10- 16.
YOU Yi , LIU Dong , YU Wenpeng , et al. Technology and its trends of active distribution network[J]. Automation of Electric Power Systems, 2012, 36 (18): 10- 16.
9 尤毅, 刘东, 钟清, 等. 多时间尺度下基于主动配电网的分布式电源协调控制[J]. 电力系统自动化, 2014, 38 (9): 192- 198.
YOU Yi , LIU Dong , ZHONG Qing , et al. Multi-time scale coordinated control of distributed generators based on active distribution network[J]. Automation of Electric Power Systems, 2014, 38 (9): 192- 198.
10 尤毅, 刘东, 钟清, 等. 主动配电网储能系统的多目标优化配置[J]. 电力系统自动化, 2014, 38 (18): 46- 52.
doi: 10.7500/AEPS20130722009
YOU Yi , LIU Dong , ZHONG Qing , et al. Multi-objective optimal placement of energy storage systems in an active distribution network[J]. Automation of Electric Power Systems, 2014, 38 (18): 46- 52.
doi: 10.7500/AEPS20130722009
11 吴振威, 蒋小平, 马会萌, 等. 用于混合储能平抑光伏波动的小波包-模糊控制[J]. 中国电机工程学报, 2014, 34 (3): 317- 324.
WU Zhenwei , JIANG Xiaoping , MA Huimeng , et al. Wavelet packet-fuzzy control of hybrid energy storage systems for PV power smoothing[J]. Proceedings of the CSEE, 2014, 34 (3): 317- 324.
12 胡娟, 杨水丽, 侯朝勇, 等. 规模化储能技术典型示范应用的现状分析与启示[J]. 电网技术, 2015, 39 (4): 879- 885.
HU Juan , YANG Shuili , HOU Chaoyong , et al. Present condition analysis on typical demonstration application of large-scale energy storage technology and its enlightenment[J]. Power System Technology, 2015, 39 (4): 879- 885.
13 FERNÁNDEZ-BLANCO R , DVORKIN Y , XU B , et al. Optimal energy storage siting and sizing: a WECC sase study[J]. IEEE Transactions on Sustainable Energy, 2017, 8 (2): 733- 743.
doi: 10.1109/TSTE.2016.2616444
14 XIANG Y , HAN W , ZHANG J , et al. Optimal sizing of energy storage system in active distribution networks using fourier—legendre series based state of energy function[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 2313- 2315.
doi: 10.1109/TPWRS.2017.2779042
15 许健, 刘念, 于雷, 等. 计及重要负荷的工业光伏微电网储能优化配置[J]. 电力系统保护与控制, 2016, 44 (9): 29- 37.
XU Jian , LIU Nian , YU Lei , et al. Optimal allocation of energy storage system of PV microgrid for industries considering important load[J]. Power System Protection and Control, 2016, 44 (9): 29- 37.
16 谭兴国, 王辉, 张黎, 等. 微电网复合储能多目标优化配置方法及评价指标[J]. 电力系统自动化, 2014, 38 (8): 7- 14.
TAN Xingguo , WANG Hui , ZHANG Li , et al. Multi-objective optimization of hybrid energy storage and assessment indices in microgrid[J]. Automation of Electric Power Systems, 2014, 38 (8): 7- 14.
17 NICK M , CHERKAOUI R , PAOLONE M . Optimal allocation of dispersed energy storage systems in active distribution networks for energy balance and grid support[J]. IEEE Transactions on Power Systems, 2014, 29 (5): 2300- 2310.
doi: 10.1109/TPWRS.2014.2302020
18 NICK M , CHERKAOUI R , PAOLONE M . Optimal planning of distributed energy storage systems in active distribution networks embedding grid reconfiguration[J]. IEEE Transactions on Power Systems, 2018, 33 (2): 1577- 1590.
doi: 10.1109/TPWRS.2017.2734942
19 颜宁, 厉伟, 邢作霞, 等. 复合储能在主动配电网中的容量配置[J]. 电工技术学报, 2017, 32 (19): 180- 186.
YAN Ning , LI Wei , XING Zuoxia , et al. Capacity allocation method in active distribution network based on hybrid energystorage[J]. Transactions of China Electrotechnical Society, 2017, 32 (19): 180- 186.
20 肖峻, 张泽群, 张磐, 等. 用于优化微网联络线功率的混合储能容量优化方法[J]. 电力系统自动化, 2014, 38 (12): 19- 26.
doi: 10.7500/AEPS20130715006
XIAO Jun , ZHANG Zequn , ZHANG Pan , et al. A capacity optimization method of hybrid energy storage system for optimizing tie-line power in microgrids[J]. Automation of Electric Power Systems, 2014, 38 (12): 19- 26.
doi: 10.7500/AEPS20130715006
21 凌开元, 赵乐冰, 张新松, 等. 基于双储能系统的主动配电网储能配置[J]. 电力自动化设备, 2018, 38 (5): 171- 176.
LING Kaiyuan , ZHAO Lebing , ZHANG Xinsong , et al. Storage allocation of active distribution network based on double-storage system[J]. Electric Power Automation Equipment, 2018, 38 (5): 171- 176.
22 BOYD S , VANDENBERGHE L . Convex optimization[M]. Cambridge, England: Cambridge University Press, 2004.
23 刘晓明, 许乃媛, 杨斌, 等. 全球能源互联网受端特高压网架双阶段优化[J]. 山东大学学报(工学版), 2017, 47 (6): 1- 6.
LIU Xiaoming , XU Naiyuan , YANG Bin , et al. Bi-stage optimization method for receiving-end ultra-high voltage network planning under global energy interconnection[J]. Journal of Shandong University (Engineering Science), 2017, 47 (6): 1- 6.
[1] 李先栋,王飞,曹永吉,王李龑,王琳,卢奕,刘子菡. 基于层次分析法的梯次利用电池储能系统运行性能量化评估[J]. 山东大学学报 (工学版), 2019, 49(4): 123-129.
[2] 张恒旭,韩林晓,石访. 基于最小偏差法的全球能源优化配置方法[J]. 山东大学学报(工学版), 2017, 47(6): 128-133.
[3] 褚晓东,唐茂森,高旭,刘伟生,贾善杰,李笋. 基于集中式信息系统的主动配电网鲁棒优化调度[J]. 山东大学学报(工学版), 2017, 47(6): 20-25.
[4] 高风华,曹升乐,徐光杰 . 整数规划在农村饮水安全水源优化配置模型中的应用与探讨[J]. 山东大学学报(工学版), 2007, 37(6): 98-100 .
[5] 张承慧,裴荣辉,石庆升,马永庆 . 城市变频调速给水泵站的优化配置[J]. 山东大学学报(工学版), 2007, 37(2): 97-102 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李梁,罗奇鸣,陈恩红. 对象级搜索中基于图的对象排序模型(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 15 -21 .
[2] Yue Khing Toh1 , XIAO Wendong2 , XIE Lihua1 . 基于无线传感器网络的分散目标跟踪:实际测试平台的开发应用(英文)[J]. 山东大学学报(工学版), 2009, 39(1): 50 -56 .
[3] 王杉,李田泽 . 一种绕线转子感应电机控制的新方法[J]. 山东大学学报(工学版), 2008, 38(3): 86 -89 .
[4] 刘文亮,朱维红,陈涤,张泓泉. 基于雷达图像的运动目标形态检测及跟踪技术[J]. 山东大学学报(工学版), 2010, 40(3): 31 -36 .
[5] 孔宪明 鞠培军. 一类中立型不确定变时滞系统的稳定性新判据[J]. 山东大学学报(工学版), 2009, 39(5): 48 -51 .
[6] 姚占勇,商庆森,赵之仲,贾朝霞 . 界面条件对半刚性沥青路面结构应力分布的影响[J]. 山东大学学报(工学版), 2007, 37(3): 93 -99 .
[7] 梁京芸,王明刚,柴家前,刘永庆 . 1.6-二-(N5-取代苯基-N1-二胍)己烷盐酸盐的合成和体外抗菌活性[J]. 山东大学学报(工学版), 2008, 38(3): 104 -107 .
[8] 孙媛媛 徐衍亮 姚之宁. 旁磁制动单相感应电动机制动力的分析与计算[J]. 山东大学学报(工学版), 2009, 39(5): 120 -123 .
[9] 孟健, 李贻斌, 李彬. 四足机器人跳跃步态控制方法[J]. 山东大学学报(工学版), 2015, 45(3): 28 -34 .
[10] 何东之, 张吉沣, 赵鹏飞. 不确定性传播算法的MapReduce并行化实现[J]. 山东大学学报(工学版), 0, (): 22 -28 .