您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(工学版)》

山东大学学报 (工学版) ›› 2019, Vol. 49 ›› Issue (1): 30-35.doi: 10.6040/j.issn.1672-3961.0.2018.195

• 机器学习与数据挖掘 • 上一篇    下一篇

基于可视化的森林火灾监测节点优化部署策略

赵鹏程(),张福全*(),杨绪兵,吴寅   

  1. 南京林业大学信息科学技术学院, 江苏 南京 210037
  • 收稿日期:2018-05-31 出版日期:2019-02-20 发布日期:2019-03-01
  • 通讯作者: 张福全 E-mail:jerry19930325@163.com;zfq@njfu.edu.cn
  • 作者简介:赵鹏程(1993—),男,江苏南京人,硕士研究生,主要研究方向为林业物联网. E-mail:jerry19930325@163.com
  • 基金资助:
    国家自然科学基金面上项目(31670554);江苏省自然基金项目(BK20161527);国家自然科学基金项目(31700478)

Optimal deployment strategy of forest fire monitoring nodes based on visualization

Pengcheng ZHAO(),Fuquan ZHANG*(),Xubing YANG,Yin WU   

  1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
  • Received:2018-05-31 Online:2019-02-20 Published:2019-03-01
  • Contact: Fuquan ZHANG E-mail:jerry19930325@163.com;zfq@njfu.edu.cn
  • Supported by:
    国家自然科学基金面上项目(31670554);江苏省自然基金项目(BK20161527);国家自然科学基金项目(31700478)

摘要:

由于森林防火传感器节点成本高、部署区域大,优化部署效率是其应用时所面临的主要问题。为使节点部署成本与覆盖效率之间相互协调,提出一种基于可视化的森林火灾监测节点优化部署策略。以实际森林环境为基础,对预置节点做可视域分析;通过建立节点可视域面积关联矩阵,使用互信息算法贪婪地选择覆盖效率最高的预置节点;在预算受限时利用子模算法预估最佳的节点部署数量。该策略既保证了覆盖效率,又减少了部署成本,是一种高性价比的森林火灾监测节点部署策略。

关键词: 森林防火, 覆盖算法, 子模模型, 可视化, 互信息

Abstract:

Because of the high cost of forest fire monitoring sensor nodes and large deployment area, the optimization of the deployment efficiency was the main problem in application. In order to coordinate the deployment cost and coverage efficiency of nodes, a visualization-based optimal monitoring nodes deployment strategy was proposed. This strategy was based on a practical dataset from the forest environment, and made viewshed analysis of the candidate nodes. The mutual information algorithm was used to greedily select the location with the highest coverage efficiency by using the viewshed area association matrix of the nodes. The optimal number of nodes was calculated under the cost constraints by the submodular algorithm. This strategy ensured coverage efficiency, and reduced deployment cost. It was a cost-effective deployment strategy for forest fire monitoring nodes.

Key words: forest fire prevention, covering algorithm, submodular model, visualization, mutual information

中图分类号: 

  • TP399

图1

多观测节点可视域分析"

图2

模型示意图"

图3

传感器观测候选点布置"

图4

全覆盖节点分布图"

表1

全覆盖优化结果"

覆盖次数 栅格个数 比例/%
1 7 584 15.49
2 23 035 47.05
3 15 265 31.18
4 2 957 6.04
>4 119 0.24

表2

成本限定下的最大覆盖结果"

传感器预算/元 覆盖栅格数 覆盖区域/% 未覆盖区域/% 一次覆盖/% 二次覆盖/%
420 000 42 018 85.82 14.18 46.71 31.66
540 000 45 317 92.68 7.32 43.39 35.19
660 000 46 196 94.35 5.65 31.33 36.93
780 000 48 458 98.97 1.03 23.42 41.35

图5

覆盖率、预算和传感器数目关系图"

1 刘丽萍, 王智, 孙优贤. 无线传感器网络部署及其覆盖问题研究[J]. 电子与信息学报, 2006, 28 (9): 1752- 1757.
LIU Liping , WANG Zhi , SUN Youxian . Survey on coverage in wireless sensor networks deployment[J]. Journal of Electronics & Information Technology, 2016, 28 (9): 1752- 1757.
2 CULLER D E , HILL J L . System architecture for wireless sensor networks[J]. Computer Science University of California, Berkeley, 2003, 11- 17.
3 刘陈, 蔡婷. 一种基于RSSI向量的传感器网络定位算法[J]. 山东大学学报(工学版), 2016, 46 (3): 23- 30.
LIU Chen , CAI Ting . A localization algorithm based on RSSI vector for wireless sensor networks[J]. Journal of Shandong University (Engineering Science), 2016, 46 (3): 23- 30.
4 符修文, 李文锋, 段莹. 分簇无线传感器网络级联失效抗毁性研究[J]. 计算机研究与发展, 2016, 53 (12): 2882- 2892.
doi: 10.7544/issn1000-1239.2016.20150455
FU Xiuwen , LI Wenfeng , DUAN Ying . Invulnerability of clustering wireless sensor network towards cascading failures[J]. Journal of Computer Research and Development, 2016, 53 (12): 2882- 2892.
doi: 10.7544/issn1000-1239.2016.20150455
5 张长森, 胡宇鹏, 陈鹏鹏. 基于Quorum的低占空比WSNs最优延迟可靠路由算法[J]. 计算机应用与软件, 2016, 33 (11): 79- 83.
doi: 10.3969/j.issn.1000-386x.2016.11.019
ZHANG Changsen , HU Yupeng , CHEN Pengpeng . Optimal-reliable delay routing algorithm for low duty cycle wsns based on quorum[J]. Computer Applications and Software, 2016, 33 (11): 79- 83.
doi: 10.3969/j.issn.1000-386x.2016.11.019
6 HUANG C F , TSENG Y C . The coverage problem in a wireless sensor network[J]. Mobile Networks & Applications, 2005, 10 (4): 519- 528.
7 HEO N, VARSHNEY P K. A distributed self spreading algorithm for mobile wireless sensor networks[C]//Wireless Communications and Networking. NewYork, USA: IEEE, 2003: 1597-1602.
8 O′ROURKE J . Art gallery theorems and algorithms[M]. Oxfordshire: Oxford University Press, 1987: 1- 10.
9 SLIJEOCEVIC S , POTKONJAK M . Power efficient organization of wireless sensor networks[J]. Proceedings of Icc Jun, 2001, 2, 472- 476.
10 赵璠, 舒立福, 周汝良. 林火行为蔓延模型研究进展[J]. 世界林业研究, 2017, 30 (2): 46- 50.
ZHAO Fan , SHU Lifu , ZHOU Ruliang . Areview of wildland fire spread modelling[J]. World Forestry Research, 2017, 30 (2): 46- 50.
11 LU G . Design of low power wsn node in wild environment[J]. American Journal of Network and Communications, 2017, 6 (2): 47- 53.
doi: 10.11648/j.ajnc.20170602.12
12 KIM Y H , RANA S , WISE S . Exploring multipleviewshed analysis using terrain features and optimisation techniques[J]. Computers & Geosciences, 2004, 30 (9): 1019- 1032.
13 BAO S , XIAO N , LAI Z , et al. Optimizing watchtower locations for forest fire monitoring using location models[J]. Fire Safety Journal, 2015, 71, 100- 109.
doi: 10.1016/j.firesaf.2014.11.016
14 REVELLE C . Review, extension and prediction in emergency service siting models[J]. European Journal of Operational Research, 1989, 40 (1): 58- 69.
15 SCHILLING D , ELZINGA D J , COHON J , et al. The team-fleet models for simultaneous facility and equipment Siting[J]. Transportation Science, 1979, 13 (2): 163- 175.
doi: 10.1287/trsc.13.2.163
16 LIU Q F , LI Y E . Improved sample method for medical image registration based on mutual information: improved sample method for medical image registration based on mutual information[J]. Journal of Computer Applications, 2010, 30 (4): 947- 949.
doi: 10.3724/SP.J.1087.2010.00947
17 KRAUSE A, GUESTRIN C. Near-optimal observation selection using submodular functions[C]//AAAI Conference on Artificial Intelligence. Vancouver, Canada: DBLP, 2007: 1650-1654.
18 GUESTRIN C, KRAUSE A, SINGH A P. Near optimal sensor placements in Gaussian processes[C]//International Conference on Machine Learning. Bonn, Germany: ACM, 2005: 265-272.
19 NEMHAUSER G L , WOLSEY L A , FISHER M L . An analysis of approximations for maximizing submodular set functions[J]. Mathematical Programming, 1978, 14 (1): 265- 294.
doi: 10.1007/BF01588971
20 KRAUSE A , LESKOVEC J , GUESTRIN C , et al. Efficient sensor placement optimization for securing large waterdistribution networks[J]. Journal of Water Resources Planning & Management, 2008, 134 (6): 516- 526.
[1] 田轶群,林荣恒. 基于知识图谱的查询显示系统的设计与实现[J]. 山东大学学报 (工学版), 2022, 52(2): 67-73.
[2] 陈馨菂, 李天瑞, 杨欢欢. 基于时间序列数据的交互式主题河流可视化[J]. 山东大学学报 (工学版), 2019, 49(4): 29-35.
[3] 林耀进,张佳,林梦雷,王娟. 一种基于模糊信息熵的协同过滤推荐方法[J]. 山东大学学报(工学版), 2016, 46(5): 13-20.
[4] 潘盼1,王熙照2,翟俊海2. 基于有序决策树的改进归纳算法[J]. 山东大学学报(工学版), 2014, 44(1): 41-44.
[5] 张小峰,张志旺,逄珊. 基于通信系统的决策树构造算法[J]. 山东大学学报(工学版), 2011, 41(4): 79-84.
[6] 吴恩启1,杜宝江1,王海鹏1,余建平2. 基于虚拟现实的地下电力管线可视化规划研究[J]. 山东大学学报(工学版), 2010, 40(6): 54-57.
[7] 王法波,许信顺. 文本分类中一种新的特征选择方法[J]. 山东大学学报(工学版), 2010, 40(4): 8-11.
[8] 翟海亭,吴晓娟,彭彰 . 一种改进的基于互信息的三维医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(4): 33-39 .
[9] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107-110 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 季涛,高旭,孙同景,薛永端,徐丙垠 . 铁路10 kV自闭/贯通线路故障行波特征分析[J]. 山东大学学报(工学版), 2006, 36(2): 111 -116 .
[2] 孙从征,管从胜,秦敬玉,程川 . 铝合金化学镀镍磷合金结构和性能[J]. 山东大学学报(工学版), 2007, 37(5): 108 -112 .
[3] 王佰伟,曹升乐 . 工业废水治理效果多目标评价方法研究[J]. 山东大学学报(工学版), 2007, 37(3): 89 -92 .
[4] 丑武胜 王朔. 大刚度环境下力反馈主手自适应算法研究[J]. 山东大学学报(工学版), 2010, 40(1): 1 -5 .
[5] 曹刚 董朝阳 黄洁宝 薛禹胜. 应用FACTS装置实现电力系统区间震荡阻尼控制[J]. 山东大学学报(工学版), 2009, 39(3): 31 -36 .
[6] 李贻斌,阮久宏,刘鲁源,宋 锐,荣学文 . 车辆纵向加速度自抗扰控制研究[J]. 山东大学学报(工学版), 2008, 38(4): 1 -04 .
[7] 李可,刘常春,李同磊 . 一种改进的最大互信息医学图像配准算法[J]. 山东大学学报(工学版), 2006, 36(2): 107 -110 .
[8] 王丽君,黄奇成,王兆旭 . 敏感性问题中的均方误差与模型比较[J]. 山东大学学报(工学版), 2006, 36(6): 51 -56 .
[9] 刘忠国,张晓静,刘伯强,刘常春 . 视觉刺激间隔对大脑诱发电位的影响[J]. 山东大学学报(工学版), 2006, 36(3): 34 -38 .
[10] 岳远征. 远离平衡态玻璃的弛豫[J]. 山东大学学报(工学版), 2009, 39(5): 1 -20 .