山东大学学报(工学版) ›› 2018, Vol. 48 ›› Issue (1): 15-20.doi: 10.6040/j.issn.1672-3961.0.2017.005
张振月,李斐,江铭炎 *
ZHANG Zhenyue, LI Fei, JIANG Mingyan*
摘要: 为了构造数据之间的自适应邻接图,同时克服稀疏表示系数和协同表示系数互相独立、提取全局信息弱的缺陷,提出采用低秩表示(low-rank representation, LRR)系数构造权重矩阵的流形学习算法,即低秩表示投影(low-rank representation projections, LRRP)和判别低秩表示投影(discriminative low-rank representation projections, DLRRP)。在新算法中,将低秩表示系数表征的样本之间的邻接关系保留在特征空间;同时利用低秩系数的聚类性质,在优化目标中加入类内散度最小化项,计算出具有判别性的投影矩阵。试验结果表明,在真实人脸图像库上与其他几种流形学习算法相比,LRRP和DLRRP能够取得更好的识别率。提出的新算法是有效的特征提取算法,能够丰富流形学习框架。
中图分类号:
[1] ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290:2323-2326. [2] BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[C] //Proceedings of International Conference on Neural Information Processing Systems: Natural and Synthetic. Vancouver, Canada: MIT Press, 2001: 585-591. [3] HE Xiaofei, NIYOGI P. Locality preserving projections[C] //Proceedings of the Seventeenth Annual Conference on Neural Information Processing Systems. Massachusetts, USA:MIT Press, 2003. [4] 黄璞,唐振民.无参数局部保持投影及人脸识别[J].模式识别与人工智能,2013, 26(9):865-871. HUANG Pu, TANG Zhenmin. Parameter-free locality preserving projections and face recognition[J]. Pattern Recognition and Artificial Intelligence, 2013, 26(9):865-871. [5] QIAO Lishan, CHEN Songcan, TAN Xiaoyang. Sparsity preserving projections with applications to face recognition[J]. Pattern Recognition, 2010, 43(1):331-341. [6] ZHANG Lei, YANG Meng, FENG Xiangchu. Sparse representation or collaborative representation: which helps face recognition?[C] //Proceedings of 2011 International Conference on Computer Vision. Barcelona, Spain: IEEE, 2011:471-478. [7] YANG Wankou, WANG Zhenyu, SUN Changyin. A collaborative representation based projections method for feature extraction[J]. Pattern Recognition, 2015, 48:20-27. [8] 杨国亮,谢乃俊,罗璐,等.基于空间约束低秩图的人脸识别[J].计算机科学, 2014, 41(8):297-300. YANG Guoliang, XIE Naijun, LUO Lu, et al. Low-rank graph with spatial constraint for face recognition[J]. Computer Science, 2014, 41(8):297-300. [9] LIU Guangcan, LIN Zhouchen, YU Yong. Robust subspace segmentation by low-rank representation[C] //Proceedings of International Conference on Machine Learning. Haifa, Israel: Omnipress, 2010:663-670. [10] WRIGHT J, WRIGHT J, GANESH A, et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices by convex optimization[C] // Proceedings of International Conference on Neural Information Processing Systems. Vancouver, Canada: Curran Associates Inc., 2009:2080-2088. [11] HE Xiaofei, MA Weiying, ZHANG Hongjiang. Learning an image manifold for retrieval[C] //Proceedings of ACM International Conference on Multimedia. New York, USA:ACM, 2004:17-23. [12] LIU Guangcan, LIN Zhouchen, YAN Shuicheng, et al. Robust recovery of subspace structures by low-rank representation[J]. IEEE Transaction on Pattern and Machine Recognition, 2013, 35(1): 171-184. [13] GAN Guojun, NG K P. Subspace clustering using affinity propagation[J]. Pattern Recognition, 2015, 48(4):1455-1464. [14] BOYD S, VANDERBERGHE L. Convex optimization[M]. New York, USA: Cambridge University Press, 2007:75-78. [15] MARTINEZ A, BENAVENTE R. The AR face database[R]. USA, Purdue University West Lafayette:Computer Vision Center: Technical Report, 1998. [16] GEORGHIADES A S, BELHUMEUR P N, KRIEGMAN D J. From few to many: illumination cone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6): 643-660. [17] PHILLIPSP J, MOON H, RIZVI A, et al. The FERET valuation methodology for face recognition algorithms[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(10): 1090-1104. [18] SIM T, BAKER S, BSAT M. The CMU pose, illumination, and expression database[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615-1618. [19] JOLLIFFE I T. Principal component analysis[M]. New York, USA: Springer-Verlag, 2002:98-99. [20] ZHANG Limei, CHEN Songcan, QIAO Lishan. Graph optimization for dimensionality reduction with sparsity constraints[J]. Pattern Recognition, 2012, 45(3): 1205-1210. |
[1] | 王国新,陈凤东,刘国栋. 基于彩色伪随机编码结构光特征提取方法[J]. 山东大学学报(工学版), 2018, 48(5): 55-60. |
[2] | 叶子云,杨金锋. 一种基于加权图模型的手指静脉识别方法[J]. 山东大学学报(工学版), 2018, 48(3): 103-109. |
[3] | 包塔拉,马剑,甘祖旺. 基于几何特征与流形距离的锂电池健康评估[J]. 山东大学学报(工学版), 2017, 47(5): 157-165. |
[4] | 于青民,李晓磊,翟勇. 基于改进EMD和数据分箱的轴承内圈故障特征提取方法[J]. 山东大学学报(工学版), 2017, 47(3): 89-95. |
[5] | 郭超,杨燕,江永全,宋祎. 基于多视图分类集成的高铁工况识别[J]. 山东大学学报(工学版), 2017, 47(1): 7-14. |
[6] | 周凯,元昌安,覃晓,郑彦,冯文铎. 基于核贝叶斯压缩感知的人脸识别[J]. 山东大学学报(工学版), 2016, 46(3): 74-78. |
[7] | 钟智彦,文志强, 张潇云,叶德刚. 基于半色调图像的邻域相似性描述子方法[J]. 山东大学学报(工学版), 2016, 46(3): 58-64. |
[8] | 卢丹, 周以齐. 基于EEMD和CWT的挖掘机座椅振动分析[J]. 山东大学学报(工学版), 2015, 45(3): 58-64. |
[9] | 任捷怡, 吴小俊. 一种改进的协方差鉴别学习方法[J]. 山东大学学报(工学版), 2015, 45(1): 9-12. |
[10] | 于海晶1,2, 李桂菊1*. 基于差分盒维数的彩色烟雾图像识别[J]. 山东大学学报(工学版), 2014, 44(1): 35-40. |
[11] | 谢志华. 一种新的血流建模方法及其在红外人脸识别中的应用[J]. 山东大学学报(工学版), 2013, 43(5): 1-5. |
[12] | 郭慧玲,王士同*,闫晓波. 基于广义旋转不变性核函数的人脸识别[J]. 山东大学学报(工学版), 2012, 42(5): 71-79. |
[13] | 李慧1,2,胡云1,3,李存华1. 基于粗糙集理论的瓦斯灾害信息特征提取技术[J]. 山东大学学报(工学版), 2012, 42(5): 91-95. |
[14] | 王洪元,封磊,冯燕,程起才. 流形学习算法在中文文本分类中的应用[J]. 山东大学学报(工学版), 2012, 42(4): 8-12. |
[15] | 曹红根1,袁宝华1,朱辉生2. 结合对比度信息与LBP的分块人脸识别[J]. 山东大学学报(工学版), 2012, 42(4): 29-34. |
|