山东大学学报(工学版) ›› 2017, Vol. 47 ›› Issue (4): 31-36.doi: 10.6040/j.issn.1672-3961.0.2016.327
毛北行,程春蕊
MAO Beixing, CHENG Chunrui
摘要: 根据分数阶微积分的相关理论利用自适应滑模控制方法研究分数阶Victor-Carmen混沌系统的滑模同步控制问题,设计分数阶滑模函数并给出控制器的构造,利用Lyapunov稳定性理论给出严格的数学证明,得到系统取得滑模同步的两个充分性条件。研究结果表明:选取适当的控制律以及滑模面下,分数阶Victor-Carmen系统取得混沌同步。数值算例表明该方法有效。
中图分类号:
[1] 丁金凤,张毅. 基于按指数律拓展的分数阶积分的El-Nabulsi-Pfaff 变分问题的Noether 对称性[J].中山大学学报(自然科学版), 2014, 54(6):150-154. DING Jinfeng, ZHANG Yi.Neother symmetries for El-Nabulsi-Pfaff variational problem for extended exponential fractional integral[J]. Journal of Zhongshan University(Science Edition), 2014, 53(6):150-154. [2] 金世欣, 张毅.基于Caputo分数阶导数的含时滞的非保守系统动力学的Noether 对称性[J].中山大学学报(自然科学版), 2015, 54(5):49-55. JIN Shixin, ZHANG Yi. Noether symmetries for non-conservative Lagrange systems with time delay based on Caputo fractional derivative[J]. Journal of Zhongshan University(Science Edition), 2015, 54(5):49-55. [3] ZHANG Yi. Fractional differential equations of motion interms of combined riemann-liouville derivatives[J].Chinese Physics B, 2012, 8(21): 302-306. [4] SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519. [5] SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J].Chinese Physics B, 2010, 19(2):502-505. [6] LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unknown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599. [7] YANG L, YANG J.Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413. [8] 毛北行, 张玉霞. 具有非线性耦合复杂网络混沌系统的有限时间同步[J].吉林大学学报(理学版), 2015, 53(4):757-761. MAO Beixing, ZHANG Yuxia. Finite-time chaos synchronization of complex networks systems with nonlinear coupling[J]. Journal of Jiling University(Science Edition), 2015, 53(4):757-761. [9] MOHAMMAD P A. Robust finite-time stabilization of fractional-order chaotic susyems based on fractional Lyapunov stability theory[J].Journal of Computation and Nonlinear Dynamics, 2012, 32(7):1011-1015. [10] MILAD Mohadeszadeh, HADI Delavari.Synchronization of fractional order hyper-chaotic systems based on a new adaptive sliding mode control[J].International Journal of Dynamics and Control, 2015, 10(7):435-446. [11] WANG X, HE Y.Projective synchronization of fractional order chaotic system based on linear separation[J].Phys Lett A, 2008, 37(12):435-441. [12] 孙宁, 张化光, 王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版), 2010, 44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291. [13] 余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J].北京航空航天大学学报, 2014, 40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mede adaptive synchronization for a class of fractional-order chaotic systems with uncertainties[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280. [14] 仲启龙, 邵永辉, 郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报, 2015, 13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J].Journal of Dynamics and Control, 2012, 17(2):46-49. [15] 张燕兰. 分数阶Rayleigh-Duffling-like系统的自适应追踪广义投影同步[J].动力学与控制学报, 2014, 12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffling-like system[J].Journal of Dynamics and Control, 2014, 12(4): 348-352. [16] GRIGORAS V, GRIGORAS C. A novel chaotic systems for random pulse generation[J].Advanced in Electrical and Computer Engineering, 2014, 14(2):109-112. [17] 徐瑞萍, 高明美. 自适应终端滑模控制不确定混沌系统的同步[J].控制工程, 2016, 23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic susyems with uncertainty using adaptive terminal sliding mode controller[J].Control Engineering of China, 2016, 23(5):715-719. [18] PODLUBN Y. Fractional differential equation[M]. New York:Academic Press, 1999. [19] BHAT S P, BERNSTEIN D S. Geometric homogeneity with applications to finite-time stability[J]. Mathematics of Control Signals and Systems, 2005, 17(2):101-127. [20] MOHAMMAD P A, SOHRAB K, GHASSE Mhassem A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091. |
[1] | 王东晓. 具有纠缠项的分数阶五维混沌系统滑模同步的两种方法[J]. 山东大学学报(工学版), 2018, 48(5): 85-90. |
[2] | 王春彦,邸金红. 基于降阶方法的分数阶多涡卷混沌系统的同步控制[J]. 山东大学学报(工学版), 2018, 48(5): 91-94. |
[3] | 孟晓玲,王建军. 一类分数阶冠状动脉系统的混沌同步控制[J]. 山东大学学报(工学版), 2018, 48(4): 55-60. |
[4] | 李翔宇,赵志诚,王文逾. 基于反向解耦的PWM整流器分数阶内模控制[J]. 山东大学学报(工学版), 2018, 48(4): 109-115. |
[5] | 毛北行. 纠缠混沌系统的比例积分滑模同步[J]. 山东大学学报(工学版), 2018, 48(4): 50-54. |
[6] | 谢晓龙,姜斌,刘剑慰,蒋银行. 基于滑模观测器的异步电动机速度传感器故障诊断及容错控制[J]. 山东大学学报(工学版), 2017, 47(5): 210-214. |
[7] | 李庆宾,王晓东. 分数阶情绪模型的终端滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 84-88. |
[8] | 毛北行,王东晓. 分数阶多涡卷系统滑模控制混沌同步[J]. 山东大学学报(工学版), 2017, 47(3): 79-83. |
[9] | 梁秋实,赵志诚. 基于分数阶滑模观测器的BLDCM无位置传感器控制[J]. 山东大学学报(工学版), 2017, 47(3): 96-101. |
[10] | 唐庆顺,金璐,李国栋,吴春富. 基于自适应终端滑模控制器的机械手跟踪控制[J]. 山东大学学报(工学版), 2016, 46(5): 45-53. |
[11] | 刘向杰,韩耀振. 基于连续高阶模滑的多机电力系统励磁控制[J]. 山东大学学报(工学版), 2016, 46(2): 64-71. |
[12] | 赵以阁, 王玉振. 分数阶非线性三角系统的状态反馈控制器设计[J]. 山东大学学报(工学版), 2015, 45(6): 29-35. |
[13] | 孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. |
[14] | 赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 2015, 45(5): 58-62. |
[15] | 王惠芳, 赵志诚, 张井岗. 一种高阶系统的分数阶IMC-IDμ控制器设计[J]. 山东大学学报(工学版), 2014, 44(6): 77-82. |
|